切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2011, Vol. 05 ›› Issue (03) : 198 -202. doi: 10.3877/cma.j.issn.1674-0793.2011.03.005

所属专题: 文献

论著

靶向Chk2逆转乳腺癌启动细胞化疗耐药的实验研究
欧阳能勇1, 龚畅2,(), 姚和瑞2   
  1. 1. 510120 广州,中山大学孙逸仙纪念医院(妇产科)
    2. 510120 广州,中山大学孙逸仙纪念医院乳腺肿瘤医学部
  • 收稿日期:2011-01-02 出版日期:2011-06-01
  • 通信作者: 龚畅
  • 基金资助:
    国家自然科学基金(30801376); 逸仙优秀医学人才基金 广东省科技计划(2008B030301092); 广东省医学科学基金(A2009182)

Interference of Chk2 reverses chemo-resistance of breast cancer initiating cells

Neng-yong OUYANG1, Chang GONG2,(), He-rui YAO2   

  1. 1. Department of gynecology and obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
  • Received:2011-01-02 Published:2011-06-01
  • Corresponding author: Chang GONG
  • About author:
    Corresponding author: GONG Chang, Email:
引用本文:

欧阳能勇, 龚畅, 姚和瑞. 靶向Chk2逆转乳腺癌启动细胞化疗耐药的实验研究[J]. 中华普通外科学文献(电子版), 2011, 05(03): 198-202.

Neng-yong OUYANG, Chang GONG, He-rui YAO. Interference of Chk2 reverses chemo-resistance of breast cancer initiating cells[J]. Chinese Archives of General Surgery(Electronic Edition), 2011, 05(03): 198-202.

目的

探讨化疗压力下,乳腺癌启动细胞DNA损伤修复的能力以及DNA损伤修复机制在乳腺癌启动细胞化疗耐药中的作用。

方法

获取乳腺癌细胞株MCF-7及其阿霉素耐药株AdrR/MCF-7,球囊培养检测乳腺癌细胞的自我更新功能,流式细胞技术检测CD44+/CD24-细胞和侧群细胞的比例,单细胞凝胶电泳实验检测DNA断裂程度。

结果

AdrR/MCF-7的球囊形成率高于MCF-7[(8.71±0.71)% vs(3.94±1.90)%,P<0.05];AdrR/MCF-7中高表达CD44+/CD24-[(59.27±4.86)% vs(1.86±0.60)%,P<0.001],并含有更高比例的侧群细胞[(8.43±1.82)% vs(0.20±0.10)%,P<0.01];AdrR/MCF-7比MCF-7能更加迅速地修复阿霉素引起的DNA损伤,拖尾消失(28.33±21.60 vs 315.00±24.54),且伴有Chk2的异常激活。干预Chk2的激活可以降低乳腺癌启动细胞的DNA损伤修复能力,凋亡细胞比例由(4.86±0.89)%增加至(19.17±0.70)%。

结论

乳腺癌启动细胞的化疗耐药性与DNA损伤修复能力增强有关,该功能与Chk2的异常激活相关。

Objective

To find out the mechanism responsibles for the chemo-resistance of breast cancer initiating cells.

Methods

MCF-7 and Adriamycin-resistant MCF-7 (AdrR/MCF-7) were obtained. Mammospheres formation efficiency were caculated to evaluate self-renewal capacity. The proportion of CD44+/CD24- cells and side-population was tested by FACS. The single cell gel electrophoresis(SCEG) was used to test the DNA damage.

Results

Compared with chemo-sensitive MCF-7, AdrR/MCF-7 enriched higher proportion of cancer initiating cells, repaired chemo-induced DNA damage more efficiently, which was associated with activation of Chk2. Interfering activation of Chk2 reduced the capacity of DNA damage repair of breast cancer cells and resensitized them to chemotherapy.

Conclusions

The chemo-resistance of breast cancer initiating cells is related to enhanced capacity of DNA damage repair, which is regulated by activation of Chk2.

图1 AdrR/MCF-7比亲代MCF-7含有更多的乳腺癌启动细胞
图2 AdrR/MCF-7球囊细胞迅速修复阿霉素引起的DNA损伤
图3 干预Chk2能恢复乳腺癌启动细胞对阿霉素的化疗敏感性
1
Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002, 99(2): 507-512.
2
Greenberg PL, Lee SJ, Advani R, et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refra ctory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol, 2004, 22(6): 1078-1086.
3
Bao S, Wu Q, Roger E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(6): 756-760.
4
Yu F, Yao H, Zhu P, et al. let-7 regulates self-renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131(6): 1109-1123.
5
Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988.
6
Patrawala L, Calhoun T, Schneider-Broussard R, et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res, 2005, 65(14): 6207-6219.
7
Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res, 2005, 65(13): 5506-5511.
8
Zhou BB, Bartek J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nature Rev Cancer, 2004, 4(3): 216-225.
9
Laurent A, Nayanta S, Lan C, et al. CHK2 Kinase: cancer susceptibility and cancer therapy-two sides of the same coin? Nature Rev Cancer, 2007, 7(12): 925-936.
10
Chen Y, Sanchez Y. Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair, 2004, 3(8-9): 1025-1032.
11
Li J, Taylor IA, Lioyd J, et al. Chk2 oligomerization studied by phosphopeptide ligation: implications for regulation and phosphodependent interactions. J Biol Chem, 2008, 283(51): 36 019-36 130.
12
Olsen BB, Larsen MR, Boldyreff B, et al. Exploring the intramolecular phosphorylation sites in human Chk2. Mutat Res, 2008, 646(1-2): 50-59.
13
Huang M, Miao ZH, Zhu H, et al. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. Mol Cancer Ther, 2008, 7(6): 1440-1449.
14
Zhuang J, Zhang J, Willers H, et al. Checkpoint kinase 2 mediated hosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. Cancer Res, 2006, 66(3): 401-1408.
15
Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol, 2009, 21(2): 245-255.
16
Zhang W, Poh A, Fanous AA, et al. DNA damage-induced S phase arrest in human breast cancer depends on Chk1, but G2 arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle, 2008, 7(11): 1668-1677.
17
Roos WP, Kaina B. Roos and Bernd Kaina. DNA damage-induced cell death by apoptosis. Trends Mol Med, 2006, 12(9): 440-450.
[1] 张旭, 徐建平, 苏冬明, 王彩芬, 王大力, 张文智. 男性乳腺肿块的超声造影特征[J]. 中华医学超声杂志(电子版), 2023, 20(08): 854-859.
[2] 邵华, 那子悦, 荆慧, 李博, 王秋程, 程文. 术前经皮超声造影对乳腺癌腋窝前哨淋巴结转移及负荷的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 849-853.
[3] 章美武, 吕淑懿, 范晓翔, 庄鲁辉, 裘玉琴, 张柏松, 张燕. 超声引导下抽液联合高渗葡萄糖冲洗治疗乳腺癌术后皮下积液的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 327-331.
[4] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[5] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[6] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[7] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[8] 王嘉, 郭宝良, 王杉, 张殿龙, 王弥迦, 周天阳, 张建国, 金锋. 初诊Ⅳ期乳腺癌诊疗临床实践指南解读[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 250-254.
[9] 张彬月, 贾红燕. 紫杉醇/白蛋白紫杉醇为基础的化疗联合PD-1/PD-L1抑制剂治疗三阴性乳腺癌的疗效和安全性:荟萃分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 52-58.
[10] 吴亚婷, 张胜行, 王水良. RNA m6A甲基化修饰调控异常在乳腺癌转移中作用的研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 45-52.
[11] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[12] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[13] 李嘉颐, 张虹, 叶京明, 刘荫华, 徐玲, 张爽. 雄激素受体在乳腺癌应用中的探索之路[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1031-1038.
[14] 崔军威, 刘荫华, 刘晓岭, 胡艺冰, 胡慧. 双靶联合化疗药物在HER2阳性乳腺癌新辅助治疗中的疗效及其影响因素[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1062-1067.
[15] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
阅读次数
全文


摘要