切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2014, Vol. 08 ›› Issue (01) : 56 -60. doi: 10.3877/cma.j.issn.1674-0793.2014.01.016

所属专题: 文献

综述

去乙酰化酶SIRT3与肿瘤代谢
汪晓强1, 缪明永1   
  1. 1. 200433 上海,第二军医大学生物化学与分子生物学教研室
  • 收稿日期:2013-11-20 出版日期:2014-02-01

SIRT3 and tumor metabolism

Xiaoqiang Wang1, mingyong Miao1   

  1. 1. Department of Biochemistry and Molecular Biology, the Second Military Medical University, Shanghai 200433, China
  • Received:2013-11-20 Published:2014-02-01
引用本文:

汪晓强, 缪明永. 去乙酰化酶SIRT3与肿瘤代谢[J]. 中华普通外科学文献(电子版), 2014, 08(01): 56-60.

Xiaoqiang Wang, mingyong Miao. SIRT3 and tumor metabolism[J]. Chinese Archives of General Surgery(Electronic Edition), 2014, 08(01): 56-60.

SIRT3是线粒体内一种重要的去乙酰化酶,对协调线粒体内复杂的代谢反应起关键作用。在抑制肿瘤发生方面,SIRT3通过抗肿瘤代谢再编程保护正常细胞而避免向肿瘤细胞转化和肿瘤发生。SIRT3调节细胞对葡萄糖的摄取,增加细胞抗氧化能力,提高电子传递链中复合体的活性,促进细胞内NADPH的生成,控制能量产生等,从多层次和多角度实现抗肿瘤代谢再编程。这对临床肿瘤诊断和治疗有一定的理论指导,并为肿瘤治疗提供新的策略和方法。

SIRT3 is an important deacetylase in the mitochondria, and plays a critical role in coordinating multiple mitochondrial metabolism. With respect to its inhibition of tumor formation, SIRT3 protects normal cells from developing into tumor cells and tumorigenesis through against the reprogramming of tumor metabolism. SIRT3 regulates cells to intake the glucose, improves the ability of defending oxidation and the activities of oxidative phosphorylation complexes, promotes NADPH production and controls the production of energy. So SIRT3 indeed resists the reprogramming of tumor metabolism by multiple mitochondrial processes. This theory that SIRT3 can inhibit the reprogramming of tumor metabolism plays a guiding role in the early detection and treatment of clinical cancer, which will provide new strategies and methods for the treatment of cancer.

1
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
2
Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect[J]. Eur J Clin Invest, 2013, 43(8): 855-865.
3
Costantini S, Sharma A, Raucci R, et al. Genealogy of an ancient protein family: the Sirtuins, a family of disordered members[J]. BMC Evol Biol, 2013, 13: 60.
4
Hebert AS, Dittenhafer-Reed KE, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome[J]. Mol Cell, 2013, 49(1): 186-199.
5
Finley LW, Haigis MC. Metabolic regulation by SIRT3: implications for tumorigenesis[J]. Trends Mol Med, 2012, 18(9): 516-523.
6
时小燕,杜丽敏. Sirtuin家族成员及其生物学特性[J]. 国际药学研究杂志, 2011, 38(5): 349-355.
7
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function[J]. Biochem J, 2007, 404(1): 1-13.
8
Salo HS, Laitinen T, Poso A, et al. Identification of novel SIRT3 inhibitor scaffolds by virtual screening[J]. Bioorg Med Chem Lett, 2013, 23(10): 2990-2995.
9
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine[J]. Annu Rev Genet, 2005, 39: 359-407.
10
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell, 2006, 23(4): 607-618.
11
Lin YY, Kiihl S, Suhail Y, et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK[J]. Nature, 2012, 482(7384): 251-255.
12
Picklo MJ Sr. Ethanol intoxication increases hepatic N-lysyl protein acetylation[J]. Biochem Biophys Res Commun, 2008, 376(3): 615-619.
13
Markley JL, Smith LM, Zhao S, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction[J]. Mol Cell, 2011, 41(2): 139-149.
14
Palacios OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY), 2009, 1(9):771-783.
15
Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5[J]. J Mol Biol, 2008, 382(3): 790-801.
16
Shimazu T, Hirschey MD, Hua L, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production[J]. Cell Metab, 2010, 12(6): 654-661.
17
Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10230-10235.
18
Brenmoehl J, Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3[J]. Mitochondrion, 2013, 13(6): 755-761.
19
Cimen H, Han MJ, Yang Y, et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria[J]. Biochemistry, 2010, 49(2): 304-311.
20
Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J]. Proc Natl Acad Sci USA, 2011, 108(35): 14608-14613.
21
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942): 834-840.
22
Tao R, Coleman MC, Pennington JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress[J]. Mol Cell, 2010, 40(6): 893-904.
23
Bell EL, Emerling BM, Ricoult SJ, et al. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production[J]. Oncogene, 2011, 30(26): 2986-2996.
24
Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization[J]. Cancer Cell, 2011, 19(3): 416-428.
25
Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J]. Cell, 2010, 143(5): 802-812.
26
Kwak SS, Cheong SA, Yoon JD, et al. Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization[J]. Theriogenology, 2012, 78(7): 1597-1610.
27
Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status[J]. J Biol Chem, 2012, 287(17): 14078-14086.
28
Yen KE, Schenkein DP. Cancer-associated isocitrate dehydrogenase mutations[J]. Oncologist, 2012, 17(1): 5-8.
29
Mullen AR, Wheaton WW, Jin ES, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria[J]. Nature, 2011, 481(7381): 385-358.
30
Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress[J]. Cancer Cell, 2010, 17(1): 41-52.
31
Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy[J]. Aging (Albany NY), 2010, 2(12): 914-923.
32
Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J]. J Clin Invest, 2009, 119(9): 2758-2771.
33
Shulga N, Wilson-Smith R, Pastorino JG. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria[J]. J Cell Sci, 2010, 123(Pt 6): 894-902.
[1] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[2] 刘锐, 王树明. 丙戊酸钠抗休克作用及其相关机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 359-362.
[3] 黄珞, 梁爱琳, 龚启梅. 线粒体动力学在牙源性间充质干细胞中的研究现状[J]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 352-357.
[4] 李晖, 范志勇, 耿西林, 常虎林, 吴武军, 张煜. 肝癌中线粒体膜蛋白ATAD3A表达与临床病理特征及预后的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 157-161.
[5] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[6] 冯同, 代文静, 李万成. 线粒体质量控制在慢性阻塞性肺疾病作用机制的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 287-289.
[7] 甘丽杏, 郑永超. 阿奇霉素对COPD急性发作期患者组蛋白去乙酰化酶2表达影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 321-324.
[8] 甘丽杏, 熊维宁, 郭雪君. 慢性阻塞性肺疾病炎症因子与组蛋白去乙酰化酶2表达的临床意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 195-197.
[9] 王瑶, 王震, 钱叶本. 基于线粒体自噬相关基因构建肝细胞癌患者预后风险模型[J]. 中华肝脏外科手术学电子杂志, 2022, 11(04): 380-385.
[10] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[11] 黄晴, 赵瑞珩, 钱惠英. PCI-24781诱导SKOV-3细胞凋亡及相关机制的研究[J]. 中华临床医师杂志(电子版), 2022, 16(08): 775-781.
[12] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
[13] 于露, 李永华. 线粒体相关内质网膜的生物学功能及其在相关疾病中作用的研究进展[J]. 中华诊断学电子杂志, 2022, 10(04): 284-288.
[14] 李泽, 刘慧, 蒲雪茵, 刘勃志, 吴菲菲, 杨雁灵, 王亚云. 线粒体参与2型糖尿病发生发展的研究进展[J]. 中华肥胖与代谢病电子杂志, 2022, 08(03): 147-153.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要