1 |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
|
2 |
Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect[J]. Eur J Clin Invest, 2013, 43(8): 855-865.
|
3 |
Costantini S, Sharma A, Raucci R, et al. Genealogy of an ancient protein family: the Sirtuins, a family of disordered members[J]. BMC Evol Biol, 2013, 13: 60.
|
4 |
Hebert AS, Dittenhafer-Reed KE, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome[J]. Mol Cell, 2013, 49(1): 186-199.
|
5 |
Finley LW, Haigis MC. Metabolic regulation by SIRT3: implications for tumorigenesis[J]. Trends Mol Med, 2012, 18(9): 516-523.
|
6 |
时小燕,杜丽敏. Sirtuin家族成员及其生物学特性[J]. 国际药学研究杂志, 2011, 38(5): 349-355.
|
7 |
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function[J]. Biochem J, 2007, 404(1): 1-13.
|
8 |
Salo HS, Laitinen T, Poso A, et al. Identification of novel SIRT3 inhibitor scaffolds by virtual screening[J]. Bioorg Med Chem Lett, 2013, 23(10): 2990-2995.
|
9 |
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine[J]. Annu Rev Genet, 2005, 39: 359-407.
|
10 |
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell, 2006, 23(4): 607-618.
|
11 |
Lin YY, Kiihl S, Suhail Y, et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK[J]. Nature, 2012, 482(7384): 251-255.
|
12 |
Picklo MJ Sr. Ethanol intoxication increases hepatic N-lysyl protein acetylation[J]. Biochem Biophys Res Commun, 2008, 376(3): 615-619.
|
13 |
Markley JL, Smith LM, Zhao S, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction[J]. Mol Cell, 2011, 41(2): 139-149.
|
14 |
Palacios OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY), 2009, 1(9):771-783.
|
15 |
Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5[J]. J Mol Biol, 2008, 382(3): 790-801.
|
16 |
Shimazu T, Hirschey MD, Hua L, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production[J]. Cell Metab, 2010, 12(6): 654-661.
|
17 |
Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10230-10235.
|
18 |
Brenmoehl J, Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3[J]. Mitochondrion, 2013, 13(6): 755-761.
|
19 |
Cimen H, Han MJ, Yang Y, et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria[J]. Biochemistry, 2010, 49(2): 304-311.
|
20 |
Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J]. Proc Natl Acad Sci USA, 2011, 108(35): 14608-14613.
|
21 |
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942): 834-840.
|
22 |
Tao R, Coleman MC, Pennington JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress[J]. Mol Cell, 2010, 40(6): 893-904.
|
23 |
Bell EL, Emerling BM, Ricoult SJ, et al. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production[J]. Oncogene, 2011, 30(26): 2986-2996.
|
24 |
Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization[J]. Cancer Cell, 2011, 19(3): 416-428.
|
25 |
Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J]. Cell, 2010, 143(5): 802-812.
|
26 |
Kwak SS, Cheong SA, Yoon JD, et al. Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization[J]. Theriogenology, 2012, 78(7): 1597-1610.
|
27 |
Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status[J]. J Biol Chem, 2012, 287(17): 14078-14086.
|
28 |
Yen KE, Schenkein DP. Cancer-associated isocitrate dehydrogenase mutations[J]. Oncologist, 2012, 17(1): 5-8.
|
29 |
Mullen AR, Wheaton WW, Jin ES, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria[J]. Nature, 2011, 481(7381): 385-358.
|
30 |
Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress[J]. Cancer Cell, 2010, 17(1): 41-52.
|
31 |
Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy[J]. Aging (Albany NY), 2010, 2(12): 914-923.
|
32 |
Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J]. J Clin Invest, 2009, 119(9): 2758-2771.
|
33 |
Shulga N, Wilson-Smith R, Pastorino JG. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria[J]. J Cell Sci, 2010, 123(Pt 6): 894-902.
|