切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2014, Vol. 08 ›› Issue (01) : 56 -60. doi: 10.3877/cma.j.issn.1674-0793.2014.01.016

所属专题: 文献

综述

去乙酰化酶SIRT3与肿瘤代谢
汪晓强1, 缪明永1   
  1. 1. 200433 上海,第二军医大学生物化学与分子生物学教研室
  • 收稿日期:2013-11-20 出版日期:2014-02-01

SIRT3 and tumor metabolism

Xiaoqiang Wang1, mingyong Miao1   

  1. 1. Department of Biochemistry and Molecular Biology, the Second Military Medical University, Shanghai 200433, China
  • Received:2013-11-20 Published:2014-02-01
引用本文:

汪晓强, 缪明永. 去乙酰化酶SIRT3与肿瘤代谢[J/OL]. 中华普通外科学文献(电子版), 2014, 08(01): 56-60.

Xiaoqiang Wang, mingyong Miao. SIRT3 and tumor metabolism[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2014, 08(01): 56-60.

SIRT3是线粒体内一种重要的去乙酰化酶,对协调线粒体内复杂的代谢反应起关键作用。在抑制肿瘤发生方面,SIRT3通过抗肿瘤代谢再编程保护正常细胞而避免向肿瘤细胞转化和肿瘤发生。SIRT3调节细胞对葡萄糖的摄取,增加细胞抗氧化能力,提高电子传递链中复合体的活性,促进细胞内NADPH的生成,控制能量产生等,从多层次和多角度实现抗肿瘤代谢再编程。这对临床肿瘤诊断和治疗有一定的理论指导,并为肿瘤治疗提供新的策略和方法。

SIRT3 is an important deacetylase in the mitochondria, and plays a critical role in coordinating multiple mitochondrial metabolism. With respect to its inhibition of tumor formation, SIRT3 protects normal cells from developing into tumor cells and tumorigenesis through against the reprogramming of tumor metabolism. SIRT3 regulates cells to intake the glucose, improves the ability of defending oxidation and the activities of oxidative phosphorylation complexes, promotes NADPH production and controls the production of energy. So SIRT3 indeed resists the reprogramming of tumor metabolism by multiple mitochondrial processes. This theory that SIRT3 can inhibit the reprogramming of tumor metabolism plays a guiding role in the early detection and treatment of clinical cancer, which will provide new strategies and methods for the treatment of cancer.

1
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
2
Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect[J]. Eur J Clin Invest, 2013, 43(8): 855-865.
3
Costantini S, Sharma A, Raucci R, et al. Genealogy of an ancient protein family: the Sirtuins, a family of disordered members[J]. BMC Evol Biol, 2013, 13: 60.
4
Hebert AS, Dittenhafer-Reed KE, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome[J]. Mol Cell, 2013, 49(1): 186-199.
5
Finley LW, Haigis MC. Metabolic regulation by SIRT3: implications for tumorigenesis[J]. Trends Mol Med, 2012, 18(9): 516-523.
6
时小燕,杜丽敏. Sirtuin家族成员及其生物学特性[J]. 国际药学研究杂志, 2011, 38(5): 349-355.
7
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function[J]. Biochem J, 2007, 404(1): 1-13.
8
Salo HS, Laitinen T, Poso A, et al. Identification of novel SIRT3 inhibitor scaffolds by virtual screening[J]. Bioorg Med Chem Lett, 2013, 23(10): 2990-2995.
9
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine[J]. Annu Rev Genet, 2005, 39: 359-407.
10
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell, 2006, 23(4): 607-618.
11
Lin YY, Kiihl S, Suhail Y, et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK[J]. Nature, 2012, 482(7384): 251-255.
12
Picklo MJ Sr. Ethanol intoxication increases hepatic N-lysyl protein acetylation[J]. Biochem Biophys Res Commun, 2008, 376(3): 615-619.
13
Markley JL, Smith LM, Zhao S, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction[J]. Mol Cell, 2011, 41(2): 139-149.
14
Palacios OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY), 2009, 1(9):771-783.
15
Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5[J]. J Mol Biol, 2008, 382(3): 790-801.
16
Shimazu T, Hirschey MD, Hua L, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production[J]. Cell Metab, 2010, 12(6): 654-661.
17
Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10230-10235.
18
Brenmoehl J, Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3[J]. Mitochondrion, 2013, 13(6): 755-761.
19
Cimen H, Han MJ, Yang Y, et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria[J]. Biochemistry, 2010, 49(2): 304-311.
20
Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production[J]. Proc Natl Acad Sci USA, 2011, 108(35): 14608-14613.
21
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942): 834-840.
22
Tao R, Coleman MC, Pennington JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress[J]. Mol Cell, 2010, 40(6): 893-904.
23
Bell EL, Emerling BM, Ricoult SJ, et al. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production[J]. Oncogene, 2011, 30(26): 2986-2996.
24
Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization[J]. Cancer Cell, 2011, 19(3): 416-428.
25
Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J]. Cell, 2010, 143(5): 802-812.
26
Kwak SS, Cheong SA, Yoon JD, et al. Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization[J]. Theriogenology, 2012, 78(7): 1597-1610.
27
Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status[J]. J Biol Chem, 2012, 287(17): 14078-14086.
28
Yen KE, Schenkein DP. Cancer-associated isocitrate dehydrogenase mutations[J]. Oncologist, 2012, 17(1): 5-8.
29
Mullen AR, Wheaton WW, Jin ES, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria[J]. Nature, 2011, 481(7381): 385-358.
30
Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress[J]. Cancer Cell, 2010, 17(1): 41-52.
31
Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy[J]. Aging (Albany NY), 2010, 2(12): 914-923.
32
Sundaresan NR, Gupta M, Kim G, et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J]. J Clin Invest, 2009, 119(9): 2758-2771.
33
Shulga N, Wilson-Smith R, Pastorino JG. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria[J]. J Cell Sci, 2010, 123(Pt 6): 894-902.
[1] 王泽华, 郭子瑊, 陈帅, 狄靖凯, 闫泽辉, 冯腾达, 毛兴佳, 向川. 线粒体质量控制在骨关节炎中的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 215-224.
[2] 周月惠, 江梦钰, 薛宇轩, 卫杨文祥, 凡一诺, 万子艺, 刘予豪, 陈镇秋, 周驰. 线粒体动力学相关蛋白影响破骨细胞分化机制探讨[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 60-68.
[3] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[4] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[5] 吴卫照, 肖贞, 袁转苹, 吴丹, 李源斌. MTO1基因变异致联合氧化磷酸化缺陷症10型患儿的临床和遗传学分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 719-727.
[6] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[7] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[8] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[9] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[10] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[11] 苗楠, 宗子钰. 脑出血后继发性脑损伤与线粒体相关机制的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 107-111.
[12] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[13] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J/OL]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
[14] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要