[1] |
Sommer F, Backhed F. The gut microbiota——masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11(4): 227-238.
|
[2] |
Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proc Natl Acad Sci USA, 2008, 105(43): 16767-1672.
|
[3] |
Lepage P, Hasler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis[J]. Gastroenterology, 2011, 141(1): 227-236.
|
[4] |
Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease[J]. Gastroenterology, 2002, 122(1): 44-54.
|
[5] |
Ohkusa T, Sato N, Ogihara T, et al. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody[J]. J Gastroenterol Hepatol, 2002,17(8): 849-853.
|
[6] |
Sokol H, Lepage P, Seksik P, et al. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis[J]. J Clin Microbiol, 2006, 44(9): 3172-3177.
|
[7] |
Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008[J]. Int J Cancer, 2010, 127(12): 2893-2917.
|
[8] |
Gao Z, Guo B, Gao R, et al. Microbiota disbiosis is associated with colorectal cancer[J]. Front Microbiol, 2015, 6: 20.
|
[9] |
Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10): 717-725.
|
[10] |
Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects[J]. Nat Rev Microbiol, 2012, 10(8): 575-582.
|
[11] |
Allen-Vercoe E, Strauss J, Chadee K. Fusobacterium nucleatum: an emerging gut pathogen?[J]. Gut Microbes, 2011, 2(5): 294-298.
|
[12] |
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2): 207-215.
|
[13] |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206.
|
[14] |
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus——present and future perspectives[J]. Nat Rev Endocrinol, 2012, 8(4): 228-236.
|
[15] |
Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. PLoS One, 2010, 5(2): e9085.
|
[16] |
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60.
|
[17] |
Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
|
[18] |
Karlsson CL, Onnerfalt J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight[J]. Obesity, 2012, 20(11): 2257-2261.
|
[19] |
Santacruz A, Collado MC, Garcia-Valdes L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women[J]. Br J Nutr, 2010, 104(1): 83-92.
|
[20] |
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500(7464): 541-546.
|
[21] |
Moco S, Candela M, Chuang E, et al. Systems biology approaches for inflammatory bowel disease: emphasis on gut microbial metabolism[J]. Inflamm Bowel Dis, 2014, 20(11): 2104-2114.
|
[22] |
De Preter V, Machiels K, Joossens M, et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD[J]. Gut, 2015, 64(3): 447-458.
|
[23] |
Garner CE, Smith S, de Lacy Costello B, et al. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease[J]. FASEB J, 2007, 21(8): 1675-1688.
|
[24] |
Williams HR, Cox IJ, Walker DG, et al. Characterization of inflammatory bowel disease with urinary metabolic profiling[J]. Am J Gastroenterol, 2009, 104(6): 1435-1444.
|
[25] |
Joossens M, Huys G, Cnockaert M, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives[J]. Gut, 2011, 60(5): 631-637.
|
[26] |
Hester CM, Jala VR, Langille MG, et al. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups[J]. W J Gastroenterol, 2015, 21(9): 2759-2769.
|
[27] |
Zlobec I, Bihl MP, Schwarb H, et al. Clinicopathological and protein characterization of BRAF- and K-RAS-mutated colorectal cancer and implications for prognosis[J]. Int J Cancer, 2010, 127(2): 367-380.
|
[28] |
Hope ME, Hold GL, Kain R, et al. Sporadic colorectal cancer—role of the commensal microbiota[J]. FEMS Microbiol Lett, 2005, 244(1): 1-7.
|
[29] |
Handa O, Naito Y, Yoshikawa T. Redox biology and gastric carcinogenesis: the role of Helicobacter pylori[J]. Redox Rep, 2011, 16(1): 1-7.
|
[30] |
Balamurugan R, Rajendiran E, George S, et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer[J]. J Gastroenterol Hepatol, 2008, 23(8 Pt1): 1298-1303.
|
[31] |
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J]. J Biol Chem, 2003, 278(13): 11312-11319.
|
[32] |
Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship[J]. Gut, 2014, 63(9): 1513-1521.
|
[33] |
Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun, 2013, 4: 1829.
|
[34] |
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-proteincoupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371.
|
[35] |
Delzenne NM, Neyrinck AM, Backhed F, et al. Targeting gut microbiota in obesity: effects of prebiotics and probiotics[J]. Nat Rev Endocrinol, 2011, 7(11): 639-646.
|
[36] |
Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: How prebiotic can work?[J]. Br J Nutr, 2013, 109 Suppl 2: S81-85.
|
[37] |
Moschen AR, Molnar C, Geiger S, et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression[J]. Gut, 2010,59(9): 1259-1264.
|
[38] |
Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment[J]. EMBO Mol Med, 2011, 3(9): 559-572.
|
[39] |
Amar J, Serino M, Lange C, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept[J]. Diabetologia, 2011, 54(12): 3055-3061.
|
[40] |
Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723.
|
[41] |
Mandard S, Zandbergen F, van Straten E, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity[J]. J Biol Chem, 2006, 281(2): 934-944.
|
[42] |
Shadnoush M, Shaker Hosseini R, Mehrabi Y, et al. Probiotic yogurt Affects Pro- and Anti-inflammatory Factors in Patients with Inflammatory Bowel Disease[J]. Iran J Pharm Res, 2013, 12(4): 929-936.
|
[43] |
Ishikawa H, Akedo I, Umesaki Y, et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis[J]. J Am Coll Nutr, 2003, 22(1): 56-63.
|
[44] |
Lammers KM, Brigidi P, Vitali B, et al. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells[J]. FEMS Immunol Med Microbiol, 2003, 38(2): 165-172.
|
[45] |
Mennigen R, Nolte K, Rijcken E, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(5): G1140-1149.
|
[46] |
Wollowski I, Rechkemmer G, Pool-Zobel BL. Protective role of probiotics and prebiotics in colon cancer[J]. Am J Clin Nutr, 2001, 73(2 Suppl): 451s-455s.
|
[47] |
Raman M, Ambalam P, Kondepudi KK, et al. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer[J]. Gut Microbes, 2013, 4(3): 181-192.
|
[48] |
Aronsson L, Huang Y, Parini P, et al. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4)[J]. PLoS One, 2010, 5(9): e13087.
|
[49] |
Raoult D. Human microbiome: take-home lesson on growth promoters?[J]. Nature, 2008, 454(7205): 690-691.
|
[50] |
Muccioli GG, Naslain D, Backhed F, et al. The endocannabinoid system links gut microbiota to adipogenesis[J]. Mol Syst Biol, 2010, 6: 392.
|
[51] |
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1): 128-139.
|
[52] |
Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286.
|
[53] |
Hsu CK, Liao JW, Chung YC, et al. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats[J]. J Nutr, 2004, 134(6): 1523-1528.
|
[54] |
Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J]. Diabetologia, 2007, 50(11): 2374-2383.
|
[55] |
Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal[J]. Am J Clin Nutr, 2009, 90(5): 1236-1243.
|
[56] |
Cani PD, Joly E, Horsmans Y, et al. Oligofructose promotes satiety in healthy human: a pilot study[J]. Eur J Clin Nutr, 2006, 60(5): 567-572.
|
[57] |
Bomba A, Nemcova R, Gancarcikova S, et al. Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids[J]. Br J Nutr, 2002, 88 Suppl 1: S95-99.
|
[58] |
Arai S, Morinaga Y, Yoshikawa T, et al. Recent trends in functional food science and the industry in Japan[J]. Biosci Biotechnol Biochem, 2002, 66(10): 2017-2029.
|
[59] |
Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial[J]. Gut, 2005, 54(2): 242-249.
|
[60] |
Steed H, Macfarlane GT, Blackett KL, et al. Clinical trial: the microbiological and immunological effects of synbiotic consumption-a randomized double-blind placebo-controlled study in active Crohn’s disease[J]. Aliment Pharmacol Ther, 2010, 32(7): 872-883.
|
[61] |
Rafter J, Bennett M, Caderni G, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients[J]. Am J Clin Nutr, 2007, 85(2): 488-496.
|