[1] |
Global Burden of Disease Cancer, Fitzmaurice C, Allen C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2017, 3(4):524-548.
|
[2] |
Khan SA, Davidson BR, Goldin RD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update[J]. Gut, 2012, 61(12):1657-1669.
|
[3] |
Park J, Kim MH, Kim KP, et al. Natural history and prognostic factors of advanced cholangiocarcinoma without surgery, chemotherapy, or radiotherapy: a large-scale observational study[J]. Gut Liver, 2009, 3(4):298-305.
|
[4] |
曹天生,江自卓,黄滨. 肝外胆管癌42例诊断及外科治疗[J/CD]. 中华普通外科学文献(电子版), 2010, 4(1):52-54.
|
[5] |
Zou S, Li J, Zhou H, et al. Mutational landscape of intrahepatic cholangiocarcinoma[J]. Nat Commun, 2014, 5:5696-5706.
|
[6] |
Walter D, Hartmann S, Waidmann O. Update on cholangiocarcinoma: potential impact of genomic studies on clinical management[J]. Z Gastroenterol, 2017, 55(6):575-581.
|
[7] |
Chan-On W, Nairismägi ML, Ong CK, et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers[J]. Nat Genet, 2013, 45(12):1474-1478.
|
[8] |
Fujimoto A, Furuta M, Shiraishi Y, et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity[J]. Nat Commun, 2015, 6:6120-6127.
|
[9] |
Simbolo M, Fassan M, Ruzzenente A, et al. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups[J]. Oncotarget, 2014, 5(9):2839-2852.
|
[10] |
Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma[J]. Hepatology, 2014, 59(4):1427-1434.
|
[11] |
Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective[J]. Onco Targets Ther, 2013, 7:57-68.
|
[12] |
Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas[J]. Nat Genet, 2013, 45(12):1470-1473.
|
[13] |
Peyssonnaux C, Eychène A. The Raf/MEK/ERK pathway: new concepts of activation[J]. Biol Cell, 2001, 93(1-2):53-62.
|
[14] |
Kranenburg O. The KRAS oncogene: past, present, and future[J]. Biochim Biophys Acta, 2005, 1756(2):81-82.
|
[15] |
Churi CR, Shroff R, Wang Y, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications[J]. PLoS One, 2014, 9(12):e115383-e115405.
|
[16] |
Isa T, Tomita S, Nakachi A, et al. Analysis of microsatellite instability, K-ras gene mutation and p53 protein overexpression in intrahepatic cholangiocarcinoma[J]. Hepatogastroenterology, 2002, 49(45):604-608.
|
[17] |
Chen TC1, Jan YY, Yeh TS. K-ras mutation is strongly associated with perineural invasion and represents an independent prognostic factor of intrahepatic cholangiocarcinoma after hepatectomy[J]. Ann Surg Oncol, 2012, 19 Suppl 3:S675-S681.
|
[18] |
Brownlee PM, Meisenberg C, Downs JA. The SWI/SNF chromatin remodelling complex: its role in maintaining genome stability and preventing tumourigenesis[J]. DNA Repair (Amst), 2015, 32:127-133.
|
[19] |
Sasaki M, Nitta T, Sato Y, et al. Loss of ARID1A expression presents a novel pathway of carcinogenesis in biliary carcinomas[J]. Am J Clin Pathol, 2016, 145(6):815-825.
|
[20] |
Yang SZ, Wang AQ, Du J, et al. Low expression of ARID1A correlates with poor prognosis in intrahepatic cholangiocarcinoma [J]. World J Gastroenterol, 2016, 22(25):5814-5821.
|
[21] |
Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets[J]. Nat Biotechnol, 2010, 28(10):1069-1078.
|
[22] |
Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications[J]. Nat Rev Cancer, 2011, 11(10):726-734.
|
[23] |
Saito Y, Saito H, Liang G, et al. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review[J]. Clin Rev Allergy Immunol, 2014, 47(2):128-135.
|
[24] |
Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype[J]. Nature, 2012, 483(7390):479-483.
|
[25] |
Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas[J]. Oncogene, 2013, 32(25):3091-3100.
|
[26] |
Kipp BR, Voss JS, Kerr SE, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma[J]. Hum Pathol, 2012, 43(10):1552-1558.
|
[27] |
Limpaiboon T, Khaenam P, Chinnasri P, et al. Promoter hypermethylation is a major event of hMLH1 gene inactivation in liver fluke related cholangiocarcinoma[J]. Cancer Lett, 2005, 217(2):213-219.
|
[28] |
Liu XF, Kong FM, Xu Z, et al. Promoter hypermethylation of death-associated protein kinase gene in cholangiocarcinoma[J]. Hepatobiliary Pancreat Dis Int, 2007, 6(4):407-411.
|
[29] |
Xiaofang L, Kun T, Shaoping Y, et al. Correlation between promoter methylation of p14(ARF), TMS1/ASC, and DAPK, and p53 mutation with prognosis in cholangiocarcinoma[J]. World J Surg Oncol, 2012, 10:5-12.
|
[30] |
Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes[J]. Hepatology, 2010, 51(3):881-890.
|
[31] |
Meng F, Wehbe-Janek H, Henson R, et al. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes[J]. Oncogene, 2008, 27(3):378-386.
|
[32] |
Silakit R, Loilome W, Yongvanit P, et al. Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator[J]. J Hepatobiliary Pancreat Sci, 2014, 21(12):864-872.
|
[33] |
Chen L, Yan HX, Yang W, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma[J]. J Hepatol, 2009, 50(2):358-369.
|
[34] |
Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways [J]. Cancer Cell, 2016, 29(4):452-463.
|
[35] |
Malek E, Jagannathan S, Driscoll JJ. Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer[J]. Oncotarget, 2014, 5(18):8027-8038.
|
[36] |
Prensner JR, Iyer MK, Balbin OA, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression[J]. Nat Biotechnol, 2011, 29(8):742-749.
|
[37] |
Shi WH, Wu QQ, Li SQ, et al. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma[J]. Tumour Biol, 2015, 36(4):2501-2507.
|
[38] |
Fumin Zhang, Ming Wana, Yi Xu, et al. Long noncoding RNA PCAT1 regulates extrahepatic cholangiocarcinoma progression via the Wnt/b-catenin-signaling pathway[J]. Biomed Pharmacother, 2017, 94:55-62.
|
[39] |
Lu X, Zhou C, Li R, et al. Long noncoding RNA AFAP1-AS1 promoted tumor growth and invasion in cholangiocarcinoma[J]. Cell Physiol Biochem, 2017, 42(1):222-230.
|
[40] |
Lavingia V, Fakih M. Impressive response to dual BRAF and MEK inhibition in patients with BRAF mutant intrahepatic cholangiocarcinoma-2 case reports and a brief review[J]. J Gastrointest Oncol, 2016, 7(6):E98-E102.
|
[41] |
Yoshikawa D, Ojima H, Iwasaki M, et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma[J]. Br J Cancer, 2008, 98(2):418-425.
|
[42] |
Chong DQ, Zhu AX. The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets[J]. Oncotarget, 2016, 7(29):46750-46767.
|
[43] |
Xu Y, Jiang X, Cui Y. Upregulated long noncoding RNA PANDAR predicts an unfavorable prognosis and promotes tumorigenesis in cholangiocarcinoma[J]. Onco Targets Ther, 2017, 10:2873-2883.
|
[44] |
Xu Y, Wang Z, Jiang X, et al. Overexpression of long noncoding RNA H19 indicates a poor prognosis for cholangiocarcinoma and promotes cell migration and invasion by affecting epithelial-mesenchymal transition[J]. Biomed Pharmacother, 2017, 92:17-23.
|
[45] |
Wang C, Mao ZP, Wang L, et al. Long non-coding RNA MALAT1 promotes cholangiocarcinoma cell proliferation and invasion by activating PI3K/Akt pathway[J]. Neoplasma, 2017, 64(5):725-731.
|
[46] |
Xu Y, Leng K, Li Z, et al. The prognostic potential and carcinogenesis of long non-coding RNA TUG1 in human cholangiocarcinoma[J]. Oncotarget, 2017, 8(39):65823-65835.
|