切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2018, Vol. 12 ›› Issue (05) : 301 -305. doi: 10.3877/cma.j.issn.1674-0793.2018.05.004

所属专题: 文献

论著

循环肿瘤DNA监测转移性乳腺癌治疗过程中肿瘤负荷量动态变化的探索性研究
李舜颖1, 方奕超1, 赖宏娜1, 李玉东1, 刘玉洁1,()   
  1. 1. 510120 广州,中山大学孙逸仙纪念医院乳腺肿瘤中心
  • 收稿日期:2018-08-03 出版日期:2018-10-01
  • 通信作者: 刘玉洁
  • 基金资助:
    国家自然科学基金面上项目(81672622); 国家自然科学基金青年项目(81702630)

Circulating tumor DNA in monitoring the dynamic changes of tumor burden during treatment of metastatic breast cancer

Shunying Li1, Yichao Fang1, Hongna Lai1, Yudong Li1, Yujie Liu1,()   

  1. 1. Department of Breast Cancer, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2018-08-03 Published:2018-10-01
  • Corresponding author: Yujie Liu
  • About author:
    Corresponding author: Liu Yujie, Email:
引用本文:

李舜颖, 方奕超, 赖宏娜, 李玉东, 刘玉洁. 循环肿瘤DNA监测转移性乳腺癌治疗过程中肿瘤负荷量动态变化的探索性研究[J]. 中华普通外科学文献(电子版), 2018, 12(05): 301-305.

Shunying Li, Yichao Fang, Hongna Lai, Yudong Li, Yujie Liu. Circulating tumor DNA in monitoring the dynamic changes of tumor burden during treatment of metastatic breast cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2018, 12(05): 301-305.

目的

探讨转移性乳腺癌患者在接受治疗过程中利用高通量测序技术进行循环肿瘤DNA(ctDNA)检测的价值。

方法

通过目标区域捕获结合第二代高通量测序技术,对转移性乳腺癌患者在进行治疗期间不同治疗节点的ctDNA进行测序,并与临床影像学指标进行对比。

结果

本研究共纳入5例转移性乳腺癌患者不同时间点的13份血液样本。利用二代高通量测序技术成功在12份(92.3%)样本中检测出ctDNA,联合生物信息学分析出ctDNA在治疗过程中的各个突变克隆的变化趋势。

结论

二代测序技术对检测转移性乳腺癌的突变谱有应用价值,ctDNA的动态变化能有效反映转移性乳腺癌患者在治疗过程中不同时期的肿瘤负荷量变化。

Objective

To explore the utility of circulating tumor DNA (ctDNA) in evaluating tumor burden and tracking the changes of tumor clones in metastatic breast cancer patients.

Methods

High-throughput sequencing and target region capture was applied in our study to analyze ctDNA sequence in different time points from metastatic breast cancer patients and was compared with the imaging indexes.

Results

The study included thirteen blood samples collected from 5 advanced breast cancer patients at different time points. Next generation sequencing detected ctDNA in 12 out of the 13 samples. Bioinformatics revealed the dynamic changes of ctDNA subclones in metastatic breast cancer patients during treatment.

Conclusion

ctDNA assay is applicable in advanced breast cancer patients and ctDNA can effectively reflect the changes of tumor burden.

表1 5例转移性乳腺癌患者的临床病理特征
表2 各个节点的血液样本中检测到的肿瘤特异体突变列表
样本编号 基因 cHGV pHGV 变异频率(%) 是否驱动突变
P001-1 STK11 c.869T>C p.L290P 1.50
P001-1 TP53 c.273G>A p.W91* 1.70
P002-1 MED12 c.2887G>A p.D963N 0.46
P002-1 EPHA2 c.1987G>A p.E663K 0.75
P002-1 KRAS c.35G>T p.G12V 0.85
P002-1 ALK c.1907T>A p.L636H 1.56
P002-1 PIK3CA c.3140A>G p.H1047R 2.01
P002-2 MED12 c.2887G>A p.D963N 0.38
P002-2 ACIN1 c.16C>T p.R6C 0.47
P002-2 EPHA2 c.1987G>A p.E663K 0.55
P002-2 DNMT3A c.1828C>G p.P610A 1.06
P002-2 HIST1H3B c.7C>G p.R3G 1.09
P002-3 EPHA2 c.1987G>A p.E663K 0.31
P002-4 BRD3 c.1515G>C p.E505D 0.26
P002-4 DNMT3A c.1828C>G p.P610A 0.46
P002-4 ACIN1 c.16C>T p.R6C 0.52
P002-4 EPHA2 c.1987G>A p.E663K 0.66
P002-5 EPHA2 c.1987G>A p.E663K 0.37
P002-5 FAT1 c.1750G>A p.V584M 0.54
P003-1 ERBB4 c.50C>T p.A17V 0.60
P003-1 RICTOR c.2353C>T p.H785Y 3.20
P003-1 ESR1 c.1138G>C p.E380Q 3.30
P003-1 RPS6KB1 c.138G>C p.E46D 4.50
P003-2 RPS6KB1 c.138G>C p.E46D 0.60
P004-1 DNMT3A c.2403G>A p.M801I 0.90
P004-1 NOTCH2 c.3554-3561delAGTATGAA p.E1185Gfs*3 1.30
P004-1 TBX3 c.1852G>A p.A618T 1.50
P004-1 DPYD c.1708T>G p.F570V 3.30
P004-1 TP53 c.817C>T p.R273C 11.40
P004-2 KDM5C c.3826G>A p.E1276K 0.90
P005-1 ESR1 c.728G>A p.R243H 0.50
P005-1 ABCC11 c.403C>T p.R135C 0.70
P005-1 CDH18 c.2317G>A p.E773K 0.70
P005-1 PIK3CA c.1035T>A p.N345K 0.90
P005-2 ESR1 c.1609T>A p.Y537N 0.50
P005-2 NF1 c.1819A>G p.R607G 0.50
P005-2 PIK3CA c.1035T>A p.N345K 3.00
图1 5例患者ctDNA中各个突变克隆在治疗过程中的变异频率变化 A、B、C、D、E为患者P001-P005各个治疗节点ctDNA突变基因变异频率的变化
[1]
Koboldt DC, Steinberg KM, Larson DE, et al. The next-generation sequencing revolution and its impact on genomics[J]. Cell, 2013,155(1):27-38.
[2]
Agostini M, Pucciarelli S, Enzo MV, et al. Circulating cell-free DNA: a promising marker of pathologic tumor response in rectal cancer patients receiving preoperative chemoradiotherapy[J]. Ann Surg Oncol, 2011,18(9):2461-2468.
[3]
Zhou J, Chang L, Guan Y, et al. Application of circulating tumor DNA as a non-invasive tool for monitoring the progression of colorectal cancer[J]. PLoS One, 2016,11(7):e0159708.
[4]
Spellman PT, Gray JW. Detecting cancer by monitoring circulating tumor DNA[J]. Nat Med, 2014,20(5):474-475.
[5]
Beaver JA, Jelovac D, Balukrishna S, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer[J]. Clin Cancer Res, 2014,20(10):2643-2650.
[6]
Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples[J]. Nat Biotechnol, 2013,31(3):213-219.
[7]
Li J, Lupat R, Amarasinghe KC, et al. CONTRA: copy number analysis for targeted resequencing[J]. Bioinformatics, 2012,28(10):1307-1313.
[8]
Roth A, Khattra J, Yap D, et al. PyClone: statistical inference of clonal population structure in cancer[J]. Nat Methods, 2014,11(4):396-398.
[9]
Nakayama N, Nakayama K, Yeasmin S, et al. KRAS or BRAF mutation status is a useful predictor of sensitivity to MEK inhibition in ovarian cancer[J]. Br J Cancer, 2008,99(12):2020-2028.
[10]
Gasch C, Oldopp T, Mauermann O, et al. Frequent detection of PIK3CA mutations in single circulating tumor cells of patients suffering from HER2-negative metastatic breast cancer[J]. Mol Oncol, 2016,10(8):1330-1343.
[11]
Murtaza M, Dawson SJ, Pogrebniak K, et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer[J]. Nat Commun, 2015,6:8760.
[12]
O’leary B, Hrebien S, Morden JP, et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer[J]. Nat Commun, 2018,9(1):896.
[13]
McGranahan N, Favero F, de Bruin EC, et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution[J]. Sci Transl Med, 2015,7(283):283ra54.
[14]
Yi Z, Ma F. Biomarkers of everolimus sensitivity in hormone receptor-positive breast cancer[J]. J Breast Cancer, 2017,20(4):321-326.
[15]
Wang L, Zhang Q, Zhang J, et al. PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib[J]. BMC Cancer, 2011,11:248.
[16]
Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer[J]. Nat Rev Clin Oncol, 2017,14(9):531-548.
[17]
Duffaud F, Therasse P. New guidelines to evaluate the response to treatment in solid tumors[J]. Bull Cancer, 2000,87(12):881-886.
[18]
Chung JH, Pavlick D, Hartmaier R, et al. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with estrogen receptor-positive metastatic breast cancer[J]. Ann Oncol, 2017,28(11):2866-2873.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 刘佳璇, 徐兵河. 中国乳腺癌临床研究年度进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 259-265.
[13] 姚成才, 刘长春, 黄文剑, 陈明. 单孔非溶脂荧光腔镜技术在早期乳腺癌腋窝前哨淋巴结活组织检查中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 266-271.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要