切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 220 -223. doi: 10.3877/cma.j.issn.1674-0793.2021.03.014

所属专题: 文献

综述

芳香烃受体在免疫调节中的作用及与程序性死亡受体1的联系
曹婉悦1, 李蕾1, 汪涛1, 徐军明1,()   
  1. 1. 201620 上海交通大学附属第一人民医院普外科
  • 收稿日期:2020-11-30 出版日期:2021-06-01
  • 通信作者: 徐军明
  • 基金资助:
    国家自然科学基金资助项目(8167030530)

Role of Aryl hydrocarbon receptor in immunomodulation and its connection with programmed death 1

Wanyue Cao1, Lei Li1, Tao Wang1, Junming Xu1,()   

  1. 1. Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
  • Received:2020-11-30 Published:2021-06-01
  • Corresponding author: Junming Xu
引用本文:

曹婉悦, 李蕾, 汪涛, 徐军明. 芳香烃受体在免疫调节中的作用及与程序性死亡受体1的联系[J]. 中华普通外科学文献(电子版), 2021, 15(03): 220-223.

Wanyue Cao, Lei Li, Tao Wang, Junming Xu. Role of Aryl hydrocarbon receptor in immunomodulation and its connection with programmed death 1[J]. Chinese Archives of General Surgery(Electronic Edition), 2021, 15(03): 220-223.

芳香烃受体(AhR)是一种配体依赖性转录因子,不同的配体介导不同甚至截然相反的作用。AhR配体种类以及来源多样,可以在细胞周期、机体生长发育、免疫细胞分化等方面发挥重要作用,其中在肿瘤免疫中发挥的调节作用尤为突出。近年来,程序性死亡受体1(PD-1)作为一种重要的免疫抑制分子,其通过与配体1(PD-L1)结合启动PD-1/PD-L1信号通路,在肿瘤免疫逃逸、器官移植排斥与自身免疫性疾病的发生发展中发挥不同作用。AhR通过与配体结合调节淋巴细胞向不同方向分化,影响PD-1/PD-L1表达,从而调节免疫系统。本文对AhR在生理和病理情况下如自身免疫性疾病、肿瘤、移植等所发挥的免疫学作用进行综述,并对AhR和PD-1之间可能存在的联系进行分析展望。

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor, and different ligands mediate different or even opposite effects. It has been found that AhR ligands are diverse in types and sources, which can play an important role in cell cycle, growth and development of the body, and differentiation of immune cells. Among them, the regulatory role in tumor immunity is particularly prominent. In recent years, programmed death 1 (PD-1) is an important immunosuppressive molecule, and the PD-1/ligand 1 (PD-L1) signaling pathway plays different roles in tumor immune escape, organ transplant rejection, and the occurrence and development of autoimmune diseases. AhR regulates the differentiation of lymphocytes in different directions by binding to ligands, and affects the expression of PD-1/PD-L1, thereby regulating the immune system. This article reviews the immunological effects of AhR under physiological and pathological conditions such as autoimmune diseases, tumors, transplantation, and analyze the possible relationship between AhR and PD-1.

[1]
Neavin DR, Liu D, Ray B, et al. The role of the Aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases[J]. Int J Mol Sci, 2018, 19(12): 3851.
[2]
Wu X, Gu Z, Chen Y, et al. Application of PD-1 blockade in cancer immunotherapy[J]. Comput Struct Biotechnol J, 2019, 17: 661-674.
[3]
Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation[J]. Cancer Cell, 2018, 33(3): 480-494.
[4]
Xue P, Fu J, Zhou Y. The Aryl hydrocarbon receptor and tumor immunity[J]. Front Immunol, 2018, 9: 286.
[5]
Yeung AW, Terentis AC, King NJ, et al. Role of indoleamine 2,3-dioxygenase in health and disease[J]. Clin Sci (Lond), 2015, 129(7): 601-672.
[6]
Mejía-García A, González-Barbosa E, Martínez-Guzmán C, et al. Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression[J]. Toxicology, 2015, 337: 47-57.
[7]
Ghosh J, Chowdhury AR, Srinivasan S, et al. Cigarette smoke toxins-induced mitochondrial dysfunction and pancreatitis involves Aryl hydrocarbon receptor mediated Cyp1 gene expression: protective effects of resveratrol[J]. Toxicol Sci, 2018, 166(2): 428-440.
[8]
Moreno-Marín N, Merino JM, Alvarez-Barrientos A, et al. Aryl hydrocarbon receptor promotes liver polyploidization and inhibits PI3K, ERK, and Wnt/β-Catenin signaling[J]. iScience, 2018, 4: 44-63.
[9]
Hýžd'alová M, Pivnicka J, Zapletal O, et al. Aryl hydrocarbon receptor-dependent metabolism plays a significant role in estrogen-like effects of polycyclic aromatic hydrocarbons on cell proliferation[J]. Toxicol Sci, 2018, 165(2): 447-461.
[10]
Yang SY, Ahmed S, Satheesh SV, et al. Genome-wide mapping and analysis of Aryl hydrocarbon receptor (AHR)- and Aryl hydrocarbon receptor repressor (AHRR)-binding sites in human breast cancer cells[J]. Arch Toxicol, 2018, 92(1): 225-240.
[11]
Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 Checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome[J]. Front Pharmacol, 2017, 8:561.
[12]
Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future[J]. J Clin Invest, 2015, 125(9): 3384-3391.
[13]
Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses[J]. Immunity, 2007, 27(1): 111-122.
[14]
Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition[J]. Science, 2017, 355(6332): 1428-1433.
[15]
Gianchecchi E, Fierabracci A. Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression[J]. Front Immunol, 2018, 9: 2374.
[16]
Spranger S, Koblish HK, Horton B, et al. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment[J]. J Immunother Cancer, 2014, 2: 3.
[17]
Kolluri SK, Jin UH, Safe S. Erratum to: role of the Aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target[J]. Arch Toxicol, 2017, 91(9): 3209.
[18]
Garcia-Villatoro EL, DeLuca J, Callaway ES, et al. Effects of high-fat diet and intestinal Aryl hydrocarbon receptor deletion on colon carcinogenesis[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G451-451, G463.
[19]
Zhu XY, Xia HG, Wang ZH, et al. In vitro and in vivo approaches for identifying the role of Aryl hydrocarbon receptor in the development of nonalcoholic fatty liver disease[J]. Toxicol Lett, 2020, 319: 85-94.
[20]
Ngui I, Perera AP, Eri R. Does NLRP3 inflammasome and Aryl hydrocarbon receptor play an interlinked role in bowel inflammation and colitis-associated colorectal cancer?[J]. Molecules, 2020, 25(10): 2427.
[21]
Baker JR, Sakoff JA, McCluskey A. The Aryl hydrocarbon receptor (AhR) as a breast cancer drug target[J]. Med Res Rev, 2020, 40(3): 972-1001.
[22]
Jin UH, Kim SB, Safe S. Omeprazole inhibits pancreatic cancer cell invasion through a nongenomic Aryl hydrocarbon receptor pathway[J]. Chem Res Toxicol, 2015, 28(5): 907-918.
[23]
Toulmonde M, Penel N, Adam J, et al. Use of PD-1 targeting, macrophage infiltration, and IDO pathway activation in sarcomas: A phase 2 clinical trial[J]. JAMA Oncol, 2018, 4(1): 93-97.
[24]
Wei ZF, Lv Q, Xia Y, et al. Norisoboldine, an anti-arthritis alkaloid isolated from radix linderae, attenuates osteoclast differentiation and inflammatory bone erosion in an Aryl hydrocarbon receptor-dependent manner[J]. Int J Biol Sci, 2015, 11(9): 1113-1126.
[25]
Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the Aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191): 65-71.
[26]
Goudot C, Coillard A, Villani AC, et al. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages[J]. Immunity, 2017, 47(3): 582-596. e6.
[27]
Smits J, Ederveen T, Rikken G, et al. Targeting the cutaneous microbiota in atopic dermatitis by coal tar via AHR-dependent induction of antimicrobial peptides[J]. J Invest Dermatol, 2020, 140(2): 415-424. e10.
[28]
Kanai T, Naganuma M. Reply[J]. Gastroenterology, 2018, 155(2): 578-579.
[29]
Wang LT, Chiou SS, Chai CY, et al. Intestine-specific homeobox gene ISX integrates IL6 signaling, tryptophan catabolism, and immune suppression[J]. Cancer Res, 2017, 77(15): 4065-4077.
[30]
Wang GZ, Zhang L, Zhao XC, et al. The Aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy[J]. Nat Commun, 2019, 10(1): 1125.
[31]
Xie FT, Cao JS, Zhao J, et al. IDO expressing dendritic cells suppress allograft rejection of small bowel transplantation in mice by expansion of Foxp3+ regulatory T cells[J]. Transpl Immunol, 2015, 33(2): 69-77.
[32]
Li C, Liu T, Zhao N, et al. Dendritic cells transfected with indoleamine 2,3-dioxygenase gene suppressed acute rejection of cardiac allograft[J]. Int Immunopharmacol, 2016, 36: 31-38.
[33]
Sun X, Gong ZJ, Wang ZW, et al. IDO-competent-DCs induced by IFN-γ attenuate acute rejection in rat liver transplantation[J]. J Clin Immunol, 2012, 32(4): 837-847.
[34]
Saha A, Aoyama K, Taylor PA, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality[J]. Blood, 2013, 122(17): 3062-3073.
[35]
Hossain MS, Kunter GM, El-Najjar VF, et al. PD-1 and CTLA-4 up regulation on donor T cells is insufficient to prevent GvHD in allo-HSCT recipients[J]. PLoS One, 2017, 12(9): e0184254.
[36]
Curran CS, Gupta S, Sanz I, et al. PD-1 immunobiology in systemic lupus erythematosus[J]. J Autoimmun, 2019, 97: 1-9.
[37]
Inoue H, Mishima K, Yamamoto-Yoshida S, et al. Aryl hydrocarbon receptor-mediated induction of EBV reactivation as a risk factor for Sjgren’s syndrome[J]. J Immunol, 2012, 188(9): 4654-4662.
[1] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[2] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[3] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[4] 梁冬梅, 王燕, 戴峻. 调节性T细胞与子宫内膜异位症关系的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 627-633.
[5] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[6] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[7] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[8] 张琴琴, 王俊楠, 林厚民, 伍莹, 谭月梅, 李明洲, 金俊飞, 王宁霞, 洪勇. 补体3在乳腺癌中的表达差异及临床意义的生物信息学分析[J]. 中华普通外科学文献(电子版), 2023, 17(04): 271-277.
[9] 曹婉悦, 陆晶, 徐军明. 芳香烃受体的激活在大鼠肝移植免疫应答中的作用及机制研究[J]. 中华普通外科学文献(电子版), 2022, 16(03): 177-182.
[10] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[11] 孙晶晶, 刘蓬杨, 张怡, 路君. STING信号通路介导抗肿瘤免疫的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 186-190.
[12] 曾伟杰, 廖延, 胡樾, 胡隽源, 曾桂芳, 傅泽钦, 伍世铎, 梁晓, 谢长峰, 刘沐芸. 冻存前后人脐带间充质干细胞对T和B淋巴细胞免疫抑制能力的差异比较[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 200-206.
[13] 李乐, 陈聪, 史赢, 陈金明, 刘中华. 肝癌患者PD-1表达及其与预后关系的Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 305-311.
[14] 刘娟丽, 马四清, 陈强. 肺表面活性蛋白-D功能及其在肺部常见疾病中的研究进展[J]. 中华重症医学电子杂志, 2022, 08(02): 167-172.
[15] 茅敏, 李秀, 王子丹, 单亮. 血小板及其表面受体配体在脓毒症凝血病中作用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(04): 302-307.
阅读次数
全文


摘要