切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 177 -182. doi: 10.3877/cma.j.issn.1674-0793.2022.03.004

论著

芳香烃受体的激活在大鼠肝移植免疫应答中的作用及机制研究
曹婉悦1, 陆晶1, 徐军明1,()   
  1. 1. 201600 上海交通大学医学院 上海市第一人民医院普外科
  • 收稿日期:2022-01-11 出版日期:2022-06-01
  • 通信作者: 徐军明
  • 基金资助:
    国家自然科学基金资助项目(81600595,81970568)

Role and mechanism of Aryl hydrocarbon receptor in immune response in rat with liver transplantation

Wanyue Cao1, Jing Lu1, Junming Xu1,()   

  1. 1. Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
  • Received:2022-01-11 Published:2022-06-01
  • Corresponding author: Junming Xu
引用本文:

曹婉悦, 陆晶, 徐军明. 芳香烃受体的激活在大鼠肝移植免疫应答中的作用及机制研究[J]. 中华普通外科学文献(电子版), 2022, 16(03): 177-182.

Wanyue Cao, Jing Lu, Junming Xu. Role and mechanism of Aryl hydrocarbon receptor in immune response in rat with liver transplantation[J]. Chinese Archives of General Surgery(Electronic Edition), 2022, 16(03): 177-182.

目的

芳香烃受体(AhR)是一种配体激活性转录因子,可以影响T细胞分化,在多种免疫性疾病中发挥作用,本研究主要探索AhR在大鼠肝移植免疫应答中的作用以及机制。

方法

建立大鼠肝移植同基因耐受模型和异基因排斥模型,术后1、3、7、14 d检测各组AhR和程序性死亡(PD-1)表达量。对肝移植排斥模型进行不同处理并分组。A组:对照组,腹腔注射(i.p.)羧甲基纤维素钠(CMC-Na) 1 ml;B组:200 mg·kg-1·d-1的3,4-DAA(i.p.);C组:10 mg·kg-1·d-1的CH223191(i.p.);D组:200 mg·kg-1·d-1的3,4-DAA和10 mg·kg-1·d-1的CH223191(i.p.)。7 d后采集受体外周血检测肝功能指标及CD4+Foxp3+T细胞和CD4+PD-1+T细胞占比,收集大鼠移植肝组织进行病理学检查,采用Banff分级评估排斥活动指数(RAI),并通过免疫印迹法、qPCR检测移植肝组织AhR、PD-1的变化。

结果

在肝移植排斥模型中AhR和PD-1表达量随着时间逐渐降低,在肝移植耐受模型中逐渐增加。与A组相比,B组受体大鼠RAI降低,存活时间延长,移植排斥减轻;而C组肝功能指标明显上调,RAI升高,移植排斥反应加重;D组与A组差异不明显。AhR和PD-1表达以及CD4+Foxp3+T细胞、CD4+PD-1+T细胞占比在受体中呈现相同的趋势。

结论

随着肝移植排斥反应的加重,AhR和PD-1表达降低,反之亦然。AhR激活可通过增加调节性T细胞的比例和PD-1的表达,有效降低大鼠肝移植排斥反应的发生。AhR有可能成为临床肝移植术后排斥治疗的新靶点。

Objective

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which can affect T cell differentiation and plays a role in various immune diseases. This study mainly explores the role and mechanism of AhR in the immune response after liver transplantation (LT) in rats.

Methods

The LT rat models of syngeneic tolerance and allogeneic rejection were established, and the expression levels of AhR and PD-1 in each group were detected at 1, 3, 7 and 14 days after LT. Then the LT rejection models were divided into four groups with different treatments (i.p.). Group A, 1 ml CMC-Na; Group B, 200 mg·kg-1·d-1 3,4-DAA; Group C, 10 mg·kg-1·d-1 CH223191; Group D, 200 mg·kg-1·d-1 3,4-DAA and 10 mg·kg-1·d-1 CH223191. After 7 days, the peripheral blood of the recipients was collected to detect liver function and the percentage of CD4+Foxp3+T cells and CD4+PD-1+T cells. The liver of recipient rats was collected for pathological examination, and the rejection activity index (RAI) was evaluated by Banff. The changes of AhR and PD-1 in liver tissues were detected by Western blotting and qPCR.

Results

The expression levels of AhR and PD-1 decreased gradually in the LT rejection model, while increased gradually in LT tolerance model. Compared with group A, RAI was decreased, survival time was prolonged and graft rejection was alleviated in group B. In group C, liver function index was significantly up-regulated, RAI was increased, and LT rejection was aggravated. There was no significant difference between group D and group A. The expression of AhR, PD-1, the percentage of CD4+Foxp3+T cells and CD4+PD-1+T cells were the same trend in recipient liver.

Conclusions

The expression of AhR and PD-1 decreased with the aggravation of LT rejection, and vice versa. Moreover, AhR activation can effectively reduce the occurrence of acute rejection in rats by increasing the proportion of Treg and the expression of PD-1, which suggests that AhR may be a new target for rejection therapy after LT.

图1 AhR和PD-1在肝移植异基因排斥模型和同基因耐受模型中的表达量变化 A、B、C为肝移植耐受模型;D、E、F为肝移植排斥模型;ns表示差异无统计学意义;*P<0.05;**P<0.01;***P<0.001
图2 3,4-DAA可有效缓解移植排斥反应,延长存活时间,而CH223191加重排斥反应 A为各组受体大鼠存活时间比较;B为四组RAI比较(ns表示差异无统计学意义;*P<0.05);C为四组受体大鼠肝组织病理染色结果(苏木精-伊红染色,10×40)
图3 各组大鼠肝功能指标变化 A为谷丙转氨酶(ALT);B为天冬氨酸转氨酶(AST);C为γ-谷氨酰转肽酶(GGT);D为总胆红素(TBIL);ns表示差异无统计学意义;*P<0.05;**P<0.01;***P<0.001
图4 3,4-DAA和CH223191通过AhR介导移植免疫反应 A~B为AhR和PD-1在四组肝移植受体中的表达量变化;C~D为四组受体大鼠脾脏内CD4+Foxp3+T细胞和CD4+PD-1+T细胞占比;ns表示差异无统计学意义;*P<0.05;**P<0.01;***P<0.001
[1]
Samuel D, Coilly A. Management of patients with liver diseases on the waiting list for transplantation: A major impact to the success of liver transplantation[J]. BMC Med, 2018, 16(1): 113.
[2]
Prasad Singh N, Nagarkatti M, Nagarkatti P. From suppressor T cells to regulatory T cells: how the journey that began with the discovery of the toxic effects of TCDD led to better understanding of the role of AhR in immunoregulation[J]. Int J Mol Sci, 2020, 21(21): 7849.
[3]
Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191): 65-71.
[4]
Campesato LF, Budhu S, Tchaicha J, et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine[J]. Nat Commun, 2020, 11(1): 4011.
[5]
Neavin DR, Liu D, Ray B, et al. The role of the Aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases[J]. Int J Mol Sci, 2018, 19(12).
[6]
Gurczynski SJ, Pereira NL, Hrycaj SM, et al. Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology[J]. JCI Insight, 2021,6(2): e139965.
[7]
Dant TA, Lin KL, Bruce DW, et al. T-cell expression of AhR inhibits the maintenance of pTreg cells in the gastrointestinal tract in acute GVHD[J]. Blood, 2017, 130(3): 348-359.
[8]
Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation[J]. Cancer Cell, 2018, 33(3): 480-494, e7.
[9]
Ozkaynak E, Wang L, Goodearl A, et al. Programmed death-1 targeting can promote allograft survival[J]. J Immunol, 2002, 169(11): 6546-6553.
[10]
Morita M, Fujino M, Jiang G, et al. PD-1/B7-H1 interaction contribute to the spontaneous acceptance of mouse liver allograft[J]. Am J Transplant, 2010, 10(1): 40-46.
[11]
Fisher J, Zeitouni N, Fan W, et al. Immune checkpoint inhibitor therapy in solid organ transplant recipients: A patient-centered systematic review[J]. J Am Acad Dermatol, 2020, 82(6): 1490-1500.
[12]
Jasperson LK, Bucher C, Panoskaltsis-Mortari A, et al. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality[J]. Blood, 2009, 114(24): 5062-5070.
[13]
Hauben E, Gregori S, Draghici E, et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells[J]. Blood, 2008, 112(4): 1214-1222.
[14]
Cai LJ, Yu DW, Gao Y, et al. Activation of aryl hydrocarbon receptor prolongs survival of fully mismatched cardiac allografts[J]. J Huazhong Univ Sci Technolog Med Sci, 2013, 33(2): 199-204.
[15]
Du X, Chang S, Guo W, et al. Progress in liver transplant tolerance and tolerance-inducing cellular therapies[J]. Front Immunol, 2020, 11: 1326.
[16]
Deng G, Song X, Fujimoto S, et al. Foxp3 post-translational modifications and Treg suppressive activity[J]. Front Immunol, 2019, 10: 2486.
[17]
Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316.
[18]
Wen Q, Zhou L, Chen H, et al. N-(3’, 4’-dimethoxycinnamonyl) anthranilic acid alleviated experimental colitis by inhibiting autoimmune response and inducing CD4+ CD25+ regulatory T cells production[J]. J Gastroenterol Hepatol, 2013, 28(8): 1330-1338.
[19]
Choi EY, Lee H, Dingle RW, et al. Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor[J]. Mol Pharmacol, 2012, 81(1): 3-11.
[1] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[2] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[3] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[4] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[5] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[6] 陈朔, 陈峰, 程飞, 项捷. 糖原累积病Ⅰ型并发胰腺炎肝移植术后胰腺梗死一例[J]. 中华移植杂志(电子版), 2023, 17(05): 300-302.
[7] 汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.
[8] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[9] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[10] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[11] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[14] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[15] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
阅读次数
全文


摘要