切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 177 -182. doi: 10.3877/cma.j.issn.1674-0793.2022.03.004

论著

芳香烃受体的激活在大鼠肝移植免疫应答中的作用及机制研究
曹婉悦1, 陆晶1, 徐军明1,()   
  1. 1. 201600 上海交通大学医学院 上海市第一人民医院普外科
  • 收稿日期:2022-01-11 出版日期:2022-06-01
  • 通信作者: 徐军明
  • 基金资助:
    国家自然科学基金资助项目(81600595,81970568)

Role and mechanism of Aryl hydrocarbon receptor in immune response in rat with liver transplantation

Wanyue Cao1, Jing Lu1, Junming Xu1,()   

  1. 1. Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
  • Received:2022-01-11 Published:2022-06-01
  • Corresponding author: Junming Xu
引用本文:

曹婉悦, 陆晶, 徐军明. 芳香烃受体的激活在大鼠肝移植免疫应答中的作用及机制研究[J/OL]. 中华普通外科学文献(电子版), 2022, 16(03): 177-182.

Wanyue Cao, Jing Lu, Junming Xu. Role and mechanism of Aryl hydrocarbon receptor in immune response in rat with liver transplantation[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2022, 16(03): 177-182.

目的

芳香烃受体(AhR)是一种配体激活性转录因子,可以影响T细胞分化,在多种免疫性疾病中发挥作用,本研究主要探索AhR在大鼠肝移植免疫应答中的作用以及机制。

方法

建立大鼠肝移植同基因耐受模型和异基因排斥模型,术后1、3、7、14 d检测各组AhR和程序性死亡(PD-1)表达量。对肝移植排斥模型进行不同处理并分组。A组:对照组,腹腔注射(i.p.)羧甲基纤维素钠(CMC-Na) 1 ml;B组:200 mg·kg-1·d-1的3,4-DAA(i.p.);C组:10 mg·kg-1·d-1的CH223191(i.p.);D组:200 mg·kg-1·d-1的3,4-DAA和10 mg·kg-1·d-1的CH223191(i.p.)。7 d后采集受体外周血检测肝功能指标及CD4+Foxp3+T细胞和CD4+PD-1+T细胞占比,收集大鼠移植肝组织进行病理学检查,采用Banff分级评估排斥活动指数(RAI),并通过免疫印迹法、qPCR检测移植肝组织AhR、PD-1的变化。

结果

在肝移植排斥模型中AhR和PD-1表达量随着时间逐渐降低,在肝移植耐受模型中逐渐增加。与A组相比,B组受体大鼠RAI降低,存活时间延长,移植排斥减轻;而C组肝功能指标明显上调,RAI升高,移植排斥反应加重;D组与A组差异不明显。AhR和PD-1表达以及CD4+Foxp3+T细胞、CD4+PD-1+T细胞占比在受体中呈现相同的趋势。

结论

随着肝移植排斥反应的加重,AhR和PD-1表达降低,反之亦然。AhR激活可通过增加调节性T细胞的比例和PD-1的表达,有效降低大鼠肝移植排斥反应的发生。AhR有可能成为临床肝移植术后排斥治疗的新靶点。

Objective

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which can affect T cell differentiation and plays a role in various immune diseases. This study mainly explores the role and mechanism of AhR in the immune response after liver transplantation (LT) in rats.

Methods

The LT rat models of syngeneic tolerance and allogeneic rejection were established, and the expression levels of AhR and PD-1 in each group were detected at 1, 3, 7 and 14 days after LT. Then the LT rejection models were divided into four groups with different treatments (i.p.). Group A, 1 ml CMC-Na; Group B, 200 mg·kg-1·d-1 3,4-DAA; Group C, 10 mg·kg-1·d-1 CH223191; Group D, 200 mg·kg-1·d-1 3,4-DAA and 10 mg·kg-1·d-1 CH223191. After 7 days, the peripheral blood of the recipients was collected to detect liver function and the percentage of CD4+Foxp3+T cells and CD4+PD-1+T cells. The liver of recipient rats was collected for pathological examination, and the rejection activity index (RAI) was evaluated by Banff. The changes of AhR and PD-1 in liver tissues were detected by Western blotting and qPCR.

Results

The expression levels of AhR and PD-1 decreased gradually in the LT rejection model, while increased gradually in LT tolerance model. Compared with group A, RAI was decreased, survival time was prolonged and graft rejection was alleviated in group B. In group C, liver function index was significantly up-regulated, RAI was increased, and LT rejection was aggravated. There was no significant difference between group D and group A. The expression of AhR, PD-1, the percentage of CD4+Foxp3+T cells and CD4+PD-1+T cells were the same trend in recipient liver.

Conclusions

The expression of AhR and PD-1 decreased with the aggravation of LT rejection, and vice versa. Moreover, AhR activation can effectively reduce the occurrence of acute rejection in rats by increasing the proportion of Treg and the expression of PD-1, which suggests that AhR may be a new target for rejection therapy after LT.

图1 AhR和PD-1在肝移植异基因排斥模型和同基因耐受模型中的表达量变化 A、B、C为肝移植耐受模型;D、E、F为肝移植排斥模型;ns表示差异无统计学意义;*P<0.05;**P<0.01;***P<0.001
图2 3,4-DAA可有效缓解移植排斥反应,延长存活时间,而CH223191加重排斥反应 A为各组受体大鼠存活时间比较;B为四组RAI比较(ns表示差异无统计学意义;*P<0.05);C为四组受体大鼠肝组织病理染色结果(苏木精-伊红染色,10×40)
图3 各组大鼠肝功能指标变化 A为谷丙转氨酶(ALT);B为天冬氨酸转氨酶(AST);C为γ-谷氨酰转肽酶(GGT);D为总胆红素(TBIL);ns表示差异无统计学意义;*P<0.05;**P<0.01;***P<0.001
图4 3,4-DAA和CH223191通过AhR介导移植免疫反应 A~B为AhR和PD-1在四组肝移植受体中的表达量变化;C~D为四组受体大鼠脾脏内CD4+Foxp3+T细胞和CD4+PD-1+T细胞占比;ns表示差异无统计学意义;*P<0.05;**P<0.01;***P<0.001
[1]
Samuel D, Coilly A. Management of patients with liver diseases on the waiting list for transplantation: A major impact to the success of liver transplantation[J]. BMC Med, 2018, 16(1): 113.
[2]
Prasad Singh N, Nagarkatti M, Nagarkatti P. From suppressor T cells to regulatory T cells: how the journey that began with the discovery of the toxic effects of TCDD led to better understanding of the role of AhR in immunoregulation[J]. Int J Mol Sci, 2020, 21(21): 7849.
[3]
Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191): 65-71.
[4]
Campesato LF, Budhu S, Tchaicha J, et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine[J]. Nat Commun, 2020, 11(1): 4011.
[5]
Neavin DR, Liu D, Ray B, et al. The role of the Aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases[J]. Int J Mol Sci, 2018, 19(12).
[6]
Gurczynski SJ, Pereira NL, Hrycaj SM, et al. Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology[J]. JCI Insight, 2021,6(2): e139965.
[7]
Dant TA, Lin KL, Bruce DW, et al. T-cell expression of AhR inhibits the maintenance of pTreg cells in the gastrointestinal tract in acute GVHD[J]. Blood, 2017, 130(3): 348-359.
[8]
Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation[J]. Cancer Cell, 2018, 33(3): 480-494, e7.
[9]
Ozkaynak E, Wang L, Goodearl A, et al. Programmed death-1 targeting can promote allograft survival[J]. J Immunol, 2002, 169(11): 6546-6553.
[10]
Morita M, Fujino M, Jiang G, et al. PD-1/B7-H1 interaction contribute to the spontaneous acceptance of mouse liver allograft[J]. Am J Transplant, 2010, 10(1): 40-46.
[11]
Fisher J, Zeitouni N, Fan W, et al. Immune checkpoint inhibitor therapy in solid organ transplant recipients: A patient-centered systematic review[J]. J Am Acad Dermatol, 2020, 82(6): 1490-1500.
[12]
Jasperson LK, Bucher C, Panoskaltsis-Mortari A, et al. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality[J]. Blood, 2009, 114(24): 5062-5070.
[13]
Hauben E, Gregori S, Draghici E, et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells[J]. Blood, 2008, 112(4): 1214-1222.
[14]
Cai LJ, Yu DW, Gao Y, et al. Activation of aryl hydrocarbon receptor prolongs survival of fully mismatched cardiac allografts[J]. J Huazhong Univ Sci Technolog Med Sci, 2013, 33(2): 199-204.
[15]
Du X, Chang S, Guo W, et al. Progress in liver transplant tolerance and tolerance-inducing cellular therapies[J]. Front Immunol, 2020, 11: 1326.
[16]
Deng G, Song X, Fujimoto S, et al. Foxp3 post-translational modifications and Treg suppressive activity[J]. Front Immunol, 2019, 10: 2486.
[17]
Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316.
[18]
Wen Q, Zhou L, Chen H, et al. N-(3’, 4’-dimethoxycinnamonyl) anthranilic acid alleviated experimental colitis by inhibiting autoimmune response and inducing CD4+ CD25+ regulatory T cells production[J]. J Gastroenterol Hepatol, 2013, 28(8): 1330-1338.
[19]
Choi EY, Lee H, Dingle RW, et al. Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor[J]. Mol Pharmacol, 2012, 81(1): 3-11.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 陈进宏. 腹腔镜活体供肝获取规范与创新[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 324-324.
[3] 仲福顺, 余露, 范晓礼, 叶啟发. 肝移植治疗肝上皮样血管内皮瘤一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 293-297.
[4] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[5] 贺健, 张骊, 王洪海, 蒋文涛. 肝移植术后脾功能亢进转归及治疗研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 310-314.
[6] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[7] 胡宁宁, 赵延荣, 王栋, 王胜亮, 郭源. FMNL3与肝细胞癌肝移植受者预后的相关性研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 283-288.
[8] 黄建朋, 邹建强, 宗华. 肝移植术后腹壁疝诊治初步经验[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 471-473.
[9] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[12] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[13] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[14] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[15] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?