切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 18 -23. doi: 10.3877/cma.j.issn.1674-0793.2023.01.004

论著

缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究
张秀杨1, 张龙飞1, 陈世远1, 高涌1,()   
  1. 1. 233004 蚌埠医学院第一附属医院血管外科
  • 收稿日期:2022-05-13 出版日期:2023-02-01
  • 通信作者: 高涌
  • 基金资助:
    安徽省教育厅高校自然科学研究重点项目(KJ2020A0558); 安徽省教育厅高校研究生科学研究项目(YJS20210538)

Hypoxia-inducible factor-1α mediating the expression of monocarboxylate transporter-1 and participating in the protective effect of short-chain fatty acids on intestinal hypoxia

Xiuyang Zhang1, Longfei Zhang1, Shiyuan Chen1, Yong Gao1,()   

  1. 1. Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
  • Received:2022-05-13 Published:2023-02-01
  • Corresponding author: Yong Gao
引用本文:

张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.

Xiuyang Zhang, Longfei Zhang, Shiyuan Chen, Yong Gao. Hypoxia-inducible factor-1α mediating the expression of monocarboxylate transporter-1 and participating in the protective effect of short-chain fatty acids on intestinal hypoxia[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(01): 18-23.

目的

明确缺氧条件下缺氧诱导因子1α(HIF-1α)对肠上皮细胞单羧酸转运蛋白1(MCT-1)的表达调控,并初步探究短链脂肪酸(SCFAs)在缺氧条件下对肠屏障的保护作用。

方法

取健康回肠组织及肠缺血坏死患者的回肠组织,进行免疫组织化学染色,检测肠上皮MCT-1表达情况。正常C57小鼠、肠上皮特异性HIF-1α敲除鼠(HIF-1αΔIEC)以及对照小鼠(HIF-1αflox/flox)构建小肠缺血再灌注(I/R)损伤模型,随机分为假手术组(Sham组)、I/R组,I/R+丁酸组,取回肠末段的组织行免疫组织化学染色及肠液行SCFAs检测,透射电镜观察小鼠回肠超微结构变化。培养肠上皮细胞系Caco-2,建立缺氧模型,用Western blotting法分别检测常氧组、缺氧组、缺氧+siHIF-1α组、丁酸+缺氧组、siMCT-1+丁酸+缺氧组MCT-1、HIF-1α和肠上皮紧密连接蛋白Claudin1、Occludin的表达情况;跨上皮电阻(TER)测定评估各组肠上皮屏障功能变化。

结果

与假手术组相比,I/R组肠道内SCFAs无明显变化。缺血、缺氧均可以诱导肠上皮细胞高表达MCT-1。HIF-1αΔIEC小鼠较对照小鼠肠道低表达MCT-1,且对I/R损伤更为敏感。丁酸在HIF-1α、MCT-1正常表达时可以介导肠屏障保护和上调Claudin1、Occludin表达。

结论

缺氧条件下,HIF-1α介导肠上皮细胞表达MCT-1,参与SCFAs对肠屏障的保护。

Objective

To investigate the regulation of hypoxia-inducible factor-1α (HIF-1α)on monocarboxylate transporter-1 (MCT-1) expression in intestinal epithelial cells under hypoxia, and the protective effects of short-chain fatty acids (SCFAs) on intestinal barrier under hypoxia.

Methods

Normal ileum and ischemic ileum were resected and stained by immunohistochemistry targeting MCT-1. Normal C57 mice, intestinal epithelial-specific HIF-1αΔIEC mice and HIF-1αflox/flox controlled mice were randomly divided into Sham group, ischemia reperfusion (I/R) group, I/R plus butyrate group. The distal ileum tissues were collected for immunohistochemical staining and the intestinal fluid in the intestinal lumen was detected for SCFAs. Intestinal epithelial cell line Caco-2 was cultured and hypoxia model was established. The cells were divided into control group, hypoxia group, hypoxia+siHIF-1α group, hypoxia+butyrate group and siMCT-1+hypoxia+butyrate group. Expression of MCT-1, HIF-1α and tight junction protein were detected by Western blotting. Changes in intestinal epithelial barrier function were assessed by transepithelial electrical resistance (TER).

Results

Compared with Sham group, intestinal SCFAs in I/R group did not change significantly. Both ischemia and hypoxia could induce high expression of MCT-1 in intestinal epithelial cells. HIF-1αΔIEC mice had lower intestinal MCT-1 expression than the control group and were more sensitive to I/R injury. Butyrate mediated intestinal barrier protection and up-regulated tight junction proteins Claudin1 and Occludin when HIF-1α and MCT-1 were normally expressed.

Conclusion

HIF-1α mediates the expression of MCT-1 in intestinal epithelial cells during hypoxia and participates in the protection of intestinal barrier by SCFAs.

图1 假手术组与缺血再灌注组回肠肠腔内短链脂肪酸质量摩尔浓度检测 A为乙酸;B为丙酸;C为丁酸;D为戊酸
图2 人体缺血坏死肠道组织和小鼠缺血再灌注(I/R)肠道组织MCT-1蛋白表达情况 健康(A)和缺血坏死(B)回肠表达MCT-1情况和免疫组织化学定量结果(×100,C);假手术组(Sham组,D)和缺血再灌注组(I/R组,E)回肠表达MCT-1情况和免疫组织化学定量结果(×100,F)
图3 HIF-1α介导MCT-1在体内、体外表达情况 阴性对照HIF-1αflox/flox小鼠(A)和肠上皮特异性HIF-1α敲除鼠HIF-1αΔIEC小鼠(B)正常条件下回肠表达MCT-1情况和免疫组织化学定量结果(×200,C);Caco-2细胞在常氧、缺氧以及缺氧+siHIF-1α条件下HIF-1α和MCT-1表达情况(D)
图4 丁酸对肠道、肠上皮屏障缺血缺氧的保护情况HIF-1αflox/flox、HIF-1αΔIEC小鼠回肠缺血再灌注苏木精-伊红染色(×40,A、B)和透射电镜观察紧密连接蛋白情况(×25 000,E、F);HIF-1αflox/flox、HIF-1αΔIEC小鼠丁酸预处理后回肠缺血再灌注苏木精-伊红染色(×40,C、D)和透射电镜观察紧密连接蛋白情况(×25 000,G、H);Caco-2细胞在常氧、缺氧、缺氧+丁酸、缺氧+丁酸+siMCT-1条件下紧密连接蛋白Claudin1、Occludin表达情况(I)和跨上皮电阻测定值(J)
[1]
Ji AL, Li T, Zu G, et al. Ubiquitin-specific protease 22 enhances intestinal cell proliferation and tissue regeneration after intestinal ischemia reperfusion injury[J]. World J Gastroenterol, 2019, 25(7): 824-836.
[2]
Corrado C, Fontana S. Hypoxia and HIF signaling: one axis with divergent effects[J]. Int J Mol Sci, 2020, 21(16): 5611.
[3]
Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 1486.
[4]
Sivaprakasam S, Bhutia YD, Yang S, et al. Short-chain fatty acid transporters: role in colonic homeostasis[J]. Compr Physiol, 2017, 8(1): 299-314.
[5]
Erdmann P, Bruckmueller H, Martin P, et al. Dysregulation of mucosal membrane transporters and drug-metabolizing enzymes in ulcerative colitis[J]. J Pharm Sci, 2019, 108(2): 1035-1046.
[6]
Zhou C, Li L, Li T, et al. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α[J]. J Mol Med (Berl), 2020, 98(8): 1189-1202.
[7]
Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion[J]. Cell Death Differ, 2019, 26(11): 2284-2299.
[8]
Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss[J]. Nat Commun, 2018, 9(1): 55.
[9]
Yuan ZQ, Zhang Y, Li XL, et al. HSP70 protects intestinal epithelial cells from hypoxia/reoxygenation injury via a mechanism that involves the mitochondrial pathways[J]. Eur J Pharmacol, 2010, 643(2-3): 282-288.
[10]
Chang CJ, Lin TL, Tsai YL, et al. Next generation probiotics in disease amelioration[J]. J Food Drug Anal, 2019, 27(3): 615-622.
[11]
Yu J, Liu F, Yin P, et al. Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine[J]. Funct Integr Genomics, 2011, 11(2): 203-213.
[12]
Vollmar B, Menger MD. Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences[J]. Langenbecks Arch Surg, 2011, 396(1): 13-29.
[13]
Ruan W, Engevik MA, Spinler JK, et al. Healthy human gastrointestinal microbiome: composition and function after a decade of exploration[J]. Dig Dis Sci, 2020, 65(3): 695-705.
[14]
Payen VL, Mina E, Van Hée VF, et al. Monocarboxylate transporters in cancer[J]. Mol Metab, 2020, 33: 48-66.
[15]
Sivaprakasam S, Bhutia YD, Yang S, et al. Short-chain fatty acid transporters: role in colonic homeostasis[J]. Compr Physiol, 2017, 8(1): 299-314.
[16]
Thibault R, De Coppet P, Daly K, et al. Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation[J]. Gastroenterology, 2007, 133(6): 1916-1927.
[17]
Hirota K. HIF-1αprolyl hydroxylase inhibitors and their implications for biomedicine: A comprehensive review[J]. Biomedicines, 2021, 9(5): 468.
[18]
Zhou C, Li L, Li T, et al. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α[J]. J Mol Med (Berl), 2020, 98(8): 1189-1202.
[19]
Hanyu H, Yokoi Y, Nakamura K, et al. Mycotoxin deoxynivalenol has different impacts on intestinal barrier and stem cells by its route of exposure[J]. Toxins (Basel), 2020, 12(10): 610.
[20]
Liu X, Chen Y, You B, et al. Molecular mechanism mediating enteric bacterial translocation after severe burn: the role of cystic fibrosis transmembrane conductance regulator[J]. Burns Trauma, 2020, 9: tkaa042.
[21]
Chi X, Yao W, Xia H, et al. Elevation of HO-1 expression mitigates intestinal ischemia-reperfusion injury and restores tight junction function in a rat liver transplantation model[J]. Oxid Med Cell Longev, 2015, 2015: 986075.
[22]
Zhang L, Zhang F, He DK, et al. MicroRNA-21 is upregulated during intestinal barrier dysfunction induced by ischemia reperfusion[J]. Kaohsiung J Med Sci, 2018, 34(10): 556-563.
[1] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[2] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[3] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[4] 于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J]. 中华移植杂志(电子版), 2022, 16(05): 314-318.
[5] 彭聪, 罗晓英, 白阳秋, 江小柯, 张炳勇. 肠道菌群代谢产物与间充质干细胞相互作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 367-371.
[6] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[7] 朱丽君, 乔晞. 肠道菌群对急性肾损伤的影响[J]. 中华肾病研究电子杂志, 2022, 11(03): 148-151.
[8] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[9] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[10] 王迎芝, 张先进, 杨士彦. 益生菌结合早期肠内营养对重症急性胰腺炎患者营养状况、肠黏膜屏障功能及肠内营养耐受性的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 55-58.
[11] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[12] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[13] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[14] 刘志强, 窦项洁, 刘白露, 董晓萌, 鲍俊宇. 银杏达莫注射液对大鼠肝缺血再灌注损伤的保护作用机制研究[J]. 中华诊断学电子杂志, 2022, 10(04): 259-265.
[15] 李宁, 刘言, 林慧庆. 肺移植供肺缺血再灌注损伤的机制及预防[J]. 中华胸部外科电子杂志, 2023, 10(04): 247-256.
阅读次数
全文


摘要