切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 169 -172. doi: 10.3877/cma.j.issn.1674-0793.2023.03.002

专家论坛

肠道菌群在结直肠癌中的作用
陈劲松(), 陈锦旭, 王荣昌   
  1. 510120 广州医科大学附属第一医院胃肠外科
  • 收稿日期:2023-04-10 出版日期:2023-06-01
  • 通信作者: 陈劲松
  • 基金资助:
    国家自然科学基金项目(82072620); 广东省基础与应用基础研究基金项目(2021A1515011357、2020A1515110056); 广州市科技计划项目(202102010158、202102010172)

Role of gut microbiota in colorectal cancer

Jinsong Chen(), Jinxu Chen, Rongchang Wang   

  • Received:2023-04-10 Published:2023-06-01
  • Corresponding author: Jinsong Chen
引用本文:

陈劲松, 陈锦旭, 王荣昌. 肠道菌群在结直肠癌中的作用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 169-172.

Jinsong Chen, Jinxu Chen, Rongchang Wang. Role of gut microbiota in colorectal cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(03): 169-172.

结直肠癌(colorectal cancer,CRC)是人类常见的恶性肿瘤之一,其发病率和死亡率呈逐年上升的趋势。在全球范围内,CRC发病率居恶性肿瘤第三位,死亡率居恶性肿瘤第二位[1];在我国,其发病率居恶性肿瘤第二位,是肿瘤相关死亡的第四个最常见原因[2]。CRC的发病机制十分复杂,涉及多个步骤、途径,目前普遍认为遗传和环境因素共同导致其发生[3]。个人或直系亲属癌症史、结肠息肉病史、炎性肠病、糖尿病、胆囊切除、肥胖、吸烟、饮酒、饮食、肠道菌群、年龄、性别、种族等均与CRC密切相关[4]。其中,肠道菌群的作用不可忽视。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
郑荣寿, 张思维, 孙可欣, 等. 2016年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2023, 45(3): 212-220.
[3]
Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(12): 713-732.
[4]
Sawicki T, Ruszkowska M, Danielewicz A, et al. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis[J]. Cancers (Basel), 2021, 13(9): 2025.
[5]
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848.
[6]
Kc D, Sumner R, Lippmann S. Gut microbiota and health[J]. Postgrad Med, 2020, 132(3): 274.
[7]
Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease[J]. Physiol Rev, 2010, 90(3): 859-904.
[8]
Kamada N, Chen GY, Inohara N, et al. Control of pathogens and pathobionts by the gut microbiota[J]. Nat Immunol, 2013, 14(7): 685-690.
[9]
Haase S, Haghikia A, Wilck N, et al. Impacts of microbiome metabolites on immune regulation and autoimmunity[J]. Immunology, 2018, 154(2): 230-238.
[10]
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nat Rev Endocrinol, 2015, 11(10): 577-591.
[11]
Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease[J]. Mol Aspects Med, 2017, 56: 54-65.
[12]
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227.
[13]
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334(6052): 105-108.
[14]
Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344): eaag2770.
[15]
Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis[J]. Cell, 2014, 159(3): 514-529.
[16]
Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level[J]. Gut, 2018, 67(4): 625-633.
[17]
Bai X, Wei H, Liu W, et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites[J]. Gut, 2022, 71(12): 2439-2450.
[18]
Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli[J]. Nature, 2020, 580(7802): 269-273.
[19]
Wallenstein A, Rehm N, Brinkmann M, et al. ClbR is the key transcriptional activator of colibactin gene expression in escherichia coli[J]. mSphere, 2020, 5(4): e00591.
[20]
Berger H, Meyer TF. Mechanistic dissection unmasks colibactin as a prevalent mutagenic driver of cancer[J]. Cancer Cell, 2021, 39(11): 1439-1441.
[21]
Dziubańska-Kusibab PJ, Berger H, Battistini F, et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer[J]. Nat Med, 2020, 26(7): 1063-1069.
[22]
Bossuet-Greif N, Vignard J, Taieb F, et al. The colibactin genotoxin generates DNA interstrand cross-links in infected cells[J]. mBio, 2018, 9(2): e02393.
[23]
Iftekhar A, Berger H, Bouznad N, et al. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells[J]. Nat Commun, 2021, 12(1): 1003.
[24]
Wagner VE, Dey N, Guruge J, et al. Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition[J]. Sci Transl Med, 2016, 8(366): 366ra164.
[25]
Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer[J]. Clin Microbiol Infect, 2006, 12(8): 782-786.
[26]
Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nat Med, 2009, 15(9): 1016-1022.
[27]
Goodwin AC, Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis[J]. Proc Natl Acad Sci U S A, 2011, 108(37): 15354-15359.
[28]
Chung L, Thiele Orberg E, Geis AL, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells[J]. Cell Host Microbe, 2018, 23(3): 421.
[29]
Wu S, Morin PJ, Maouyo D, et al. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation[J]. Gastroenterology, 2003, 124(2): 392-400.
[30]
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2): 207-215.
[31]
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206.
[32]
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355.
[33]
Gur C, Maalouf N, Shhadeh A, et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1[J]. Oncoimmunology, 2019, 8(6): e1581531.
[34]
Chen T, Li Q, Wu J, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism[J]. Cancer Immunol Immunother, 2018, 67(10): 1635-1646.
[35]
Brennan CA, Clay SL, Lavoie SL, et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression[J]. Gut Microbes, 2021, 13(1): 1987780.
[36]
Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma[J]. Cancer Res, 2014, 74(5): 1311-1318.
[37]
He Z, Gharaibeh RZ, Newsome RC, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin[J]. Gut, 2019, 68(2): 289-300.
[38]
Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(11): 690-704.
[39]
Wang Y, Li H. Gut microbiota modulation: A tool for the management of colorectal cancer[J]. J Transl Med, 2022, 20(1): 178.
[40]
Fong W, Li Q, Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer[J]. Oncogene, 2020, 39(26): 4925-4943.
No related articles found!
阅读次数
全文


摘要