切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 380 -384. doi: 10.3877/cma.j.issn.1674-0793.2023.05.013

综述

溶瘤病毒治疗在结直肠癌中的应用
薛永婷, 高峰(), 王雅楠, 屈莲平   
  1. 730000 兰州,甘肃中医药大学中医临床学院
    730050 兰州,中国人民解放军联勤保障部队第九四〇医院结直肠肛门外科
  • 收稿日期:2022-11-21 出版日期:2023-10-01
  • 通信作者: 高峰
  • 基金资助:
    甘肃省科技计划项目(重点研发计划)(20YF8FA098)

Application of oncolytic virus therapy in colorectal cancer

Yongting Xue, Feng Gao(), Yanan Wang, Lianping Qu   

  1. Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
    Department of Colorectal and Anal Surgery, the 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou 730050, China
  • Received:2022-11-21 Published:2023-10-01
  • Corresponding author: Feng Gao
引用本文:

薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.

Yongting Xue, Feng Gao, Yanan Wang, Lianping Qu. Application of oncolytic virus therapy in colorectal cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(05): 380-384.

溶瘤病毒治疗作为免疫治疗的一大分支,成为近年来的研究热点。溶瘤病毒主要通过靶向裂解肿瘤细胞,诱导机体产生特异性免疫反应,从而达到抗肿瘤的效果;还可联合放化疗、免疫抑制剂,改善肿瘤微环境,增强抗肿瘤作用。本文对较常用的溶瘤病毒在结直肠癌中的应用及其机制研究现状作一综述。

As a branch of immunotherapy, oncolytic virus therapy has become a research hotspot in recent years. Oncolytic virus mainly achieves anti-tumor effect by inducing specific immune response through targeted lysis of tumor cells. Oncolytic viruses can also be combined with radiotherapy and chemotherapy, immunosuppressive agents to reprogram tumor microenvironment and enhance anti-tumor effects. This article reviews the application and mechanism of commonly used oncolytic viruses in colorectal cancer.

表1 不同类型溶瘤病毒临床研究
[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
Liu S, Zheng R, Zhang M, et al. Incidence and mortality of colorectal cancer in China, 2011[J]. Chin J Cancer Res, 2015, 27(1): 22-28.
[3]
Yoo SY, Bang SY, Jeong SN, et al. A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer[J]. Oncotarget, 2016, 7(13): 16479-16489.
[4]
Nakatake M, Kuwano N, Kaitsurumaru E, et al. Fusogenic oncolytic vaccinia virus enhances systemic antitumor immune response by modulating the tumor microenvironment[J]. Mol Ther, 2021, 29(5): 1782-1793.
[5]
Deng L, Yang X, Fan J, et al. IL-24-armed oncolytic vaccinia virus exerts potent antitumor effects via multiple pathways in colorectal cancer[J]. Oncol Res, 2021, 28(6): 579-590.
[6]
Samson A, West EJ, Carmichael J, et al. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients[J]. Cancer Immunol Res, 2022, 10(6): 745-756.
[7]
Downs-Canner S, Guo ZS, Ravindranathan R, et al. Phase 1 study of intravenous oncolytic Poxvirus (vvDD) in patients with advanced solid cancers[J]. Mol Ther, 2016, 24(8): 1492-1501.
[8]
Park SH, Breitbach CJ, Lee J, et al. Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer[J]. Mol Ther, 2015, 23(9): 1532-1540.
[9]
Xiao B, Zhang L, Liu H, et al. Oncolytic adenovirus CD55-Smad4 suppresses cell proliferation, metastasis, and tumor stemness in colorectal cancer by regulating Wnt/β-Catenin signaling pathway[J]. Biomedicines, 2020, 8(12): 593.
[10]
Guo Y, Zhang Z, Xu X, et al. Menstrual blood-derived stem cells as delivery vehicles for oncolytic adenovirus virotherapy for colorectal cancer[J]. Stem Cells Dev, 2019, 28(13): 882-896.
[11]
Gao H, Zhang X, Ding Y, et al. Synergistic suppression effect on tumor growth of colorectal cancer by combining radiotherapy with a trail-armed oncolytic adenovirus[J]. Technol Cancer Res Treat, 2019, 18: 1533033819853290.
[12]
Jessup JM, Kabbout M, Korokhov N, et al. Adenovirus and oxaliplatin cooperate as agnostic sensitizers for immunogenic cell death in colorectal carcinoma[J]. Hum Vaccin Immunother, 2020, 16(3): 636-644.
[13]
Fabian KP, Malamas AS, Padget MR, et al. Therapy of established tumors with rationally designed multiple agents targeting diverse immune-tumor interactions: engage, expand, enable[J]. Cancer Immunol Res, 2021, 9(2): 239-252.
[14]
Sun K, Xu Y, Zhang L, et al. A phase 2 trial of enhancing immune checkpoint blockade by stereotactic radiation and in situ virus gene therapy in metastatic triple-negative breast cancer[J]. Clin Cancer Res, 2022, 28(20): 4392-4401.
[15]
Gállego Pérez-Larraya J, Garcia-Moure M, Labiano S, et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma[J]. N Engl J Med, 2022, 386(26): 2471-2481.
[16]
Seiwert TY, Darga T, Haraf D, et al. A phase I dose escalation study of Ad GV.EGR.TNF.11D (TNFerade™ Biologic) with concurrent chemoradiotherapy in patients with recurrent head and neck cancer undergoing reirradiation[J]. Ann Oncol, 2013, 24(3): 769-776.
[17]
Freytag SO, Stricker H, Lu M, et al. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer[J]. Int J Radiat Oncol Biol Phys, 2014, 89(2): 268-276.
[18]
Palmer CD, Rappaport AR, Davis MJ, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results[J]. Nat Med, 2022, 28(8): 1619-1629.
[19]
Garcia-Carbonero R, Salazar R, Duran I, et al. Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection[J]. J Immunother Cancer, 2017, 5(1): 71.
[20]
Sze DY, Iagaru AH, Gambhir SS, et al. Response to intra-arterial oncolytic virotherapy with the herpes virus NV1020 evaluated by [18F]fluorodeoxyglucose positron emission tomography and computed tomography[J]. Hum Gene Ther, 2012, 23(1): 91-97.
[21]
Geevarghese SK, Geller DA, de Haan HA, et al. Phase Ⅰ/Ⅱ study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver[J]. Hum Gene Ther, 2010, 21(9): 1119-1128.
[22]
Zhang W, Zeng B, Hu X, et al. Oncolytic herpes simplex virus type 2 can effectively inhibit colorectal cancer liver metastasis by modulating the immune status in the tumor microenvironment and inducing specific antitumor immunity[J]. Hum Gene Ther, 2021, 32(3-4): 203-215.
[23]
Zhang W, Wang F, Hu X, et al. Inhibition of colorectal cancer liver metastasis in BALB/c mice following intratumoral injection of oncolytic herpes simplex virus type 2 for the induction of specific antitumor immunity[J]. Oncol Lett, 2019, 17(1): 815-822.
[24]
Haghighi-Najafabadi N, Roohvand F, Shams Nosrati MS, et al. Oncolytic herpes simplex virus type-1 expressing IL-12 efficiently replicates and kills human colorectal cancer cells[J]. Microb Pathog, 2021, 160: 105164.
[25]
Wu Z, Ichinose T, Naoe Y, et al. Combination of cetuximab and oncolytic virus canerpaturev synergistically inhibits human colorectal cancer growth[J]. Mol Ther Oncolytics, 2019, 13: 107-115.
[26]
Zhou X, Zhao J, Zhang JV, et al. Enhancing Therapeutic efficacy of oncolytic herpes simplex virus with MEK inhibitor trametinib in some BRAF or KRAS-mutated colorectal or lung carcinoma models[J]. Viruses, 2021, 13(9): 1758.
[27]
Shayan S, Arashkia A, Bahramali G, et al. Cell type-specific response of colon cancer tumor cell lines to oncolytic HSV-1 virotherapy in hypoxia[J]. Cancer Cell Int, 2022, 22(1): 164.
[28]
王凤娇, 韩继武, 王大秀. 荷IL-12新城疫病毒治疗结肠癌的实验及其机制探讨[J].现代肿瘤医学, 2021, 29(5): 761-765.
[29]
Meng F, Cao Y, Su H, et al. Newcastle disease virus expressing an angiogenic inhibitor exerts an enhanced therapeutic efficacy in colon cancer model[J]. PLoS One, 2022, 17(4): e0264896.
[30]
Tian L, Liu T, Jiang S, et al. Oncolytic Newcastle disease virus expressing the co-stimulator OX40L as immunopotentiator for colorectal cancer therapy[J]. Gene Ther, 2023, 30(1-2): 64-74.
[31]
梁莹, 黄盼柳, 樊晓晖, 等. 新城疫病毒7793对结肠癌肝转移模型小鼠肝内Th1、Th2、Th17类细胞因子表达的影响[J]. 肿瘤学杂志, 2016, 22(5): 355-359.
[32]
古丽娜儿, 王思橦, 黄莉莉, 等.新城疫病毒诱导结肠癌Caco2细胞株发生Caspase和p38MAPK依赖性诱凋亡[J]. 同济大学学报(医学版), 2020, 41(5): 546-551.
[33]
Li Q, Wei D, Feng F, et al. α2,6-linked sialic acid serves as a high-affinity receptor for cancer oncolytic virotherapy with Newcastle disease virus[J]. J Cancer Res Clin Oncol, 2017, 143(11): 2171-2181.
[34]
Schulze T, Kemmner W, Weitz J, et al. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial[J]. Cancer Immunol Immunother, 2009, 58(1): 61-69.
[35]
Sharifi N, Soleimanjahi H, Mokhtari-Dizaji M, et al. Low-intensity ultrasound as a novel strategy to improve the cytotoxic effect of oncolytic reovirus on colorectal cancer model cells[J]. Intervirology, 2022, 65(2): 110-118.
[36]
Babaei A, Soleimanjahi H, Soleimani M, et al. The synergistic anticancer effects of ReoT3D, CPT-11, and BBI608 on murine colorectal cancer cells[J]. Daru, 2020, 28(2): 555-565.
[37]
Jiffry J, Thavornwatanayong T, Rao D, et al. Oncolytic reovirus (pelareorep) induces autophagy in KRAS-mutated colorectal cancer[J]. Clin Cancer Res, 2021, 27(3): 865-876.
[38]
Maitra R, Seetharam R, Tesfa L, et al. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan[J]. Oncotarget, 2014, 5(9): 2807-2819.
[39]
Maitra R, Augustine T, Dayan Y, et al. Toll like receptor 3 as an immunotherapeutic target for KRAS mutated colorectal cancer[J]. Oncotarget, 2017, 8(21): 35138-35153.
[40]
Babaei A, Soleimanjahi H, Soleimani M, et al. Mesenchymal stem cells loaded with oncolytic reovirus enhances antitumor activity in mice models of colorectal cancer[J]. Biochem Pharmacol, 2021, 190: 114644.
[41]
Parakrama R, Fogel E, Chandy C, et al. Immune characterization of metastatic colorectal cancer patients post reovirus administration[J]. BMC Cancer, 2020, 20(1): 569.
[42]
Jonker DJ, Tang PA, Kennecke H, et al. A randomized phase Ⅱ study of FOLFOX6/bevacizumab with or without pelareorep in patients with metastatic colorectal cancer: IND.210, a Canadian Cancer Trials Group trial[J]. Clin Colorectal Cancer, 2018, 17(3): 231-239, e7.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[3] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[4] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[7] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[8] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[11] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[14] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要