[1] |
中华医学会肠外肠内营养学分会. 多种TE制剂临床应用专家共识[J]. 中华外科杂志, 2018, 56(3): 168-176.
|
[2] |
Berger MM, Shenkin A, Schweinlin A, et al. ESPEN micronutrient guideline[J]. Clin Nutr, 2022, 41(6): 1357-1424.
|
[3] |
Blaauw R, Osland E, Sriram K, et al. Parenteral provision of micronutrients to adult patients: An expert consensus paper[J]. JPEN J Parenter Enteral Nutr, 2019, 43 Suppl 1: S5-S23.
|
[4] |
McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult criticallyⅢ patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N.)[J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 159-211.
|
[5] |
Osland EJ, Ali A, Isenring E, et al. Australasian Society for Parenteral and Enteral Nutrition Guidelines for supplementation of trace elements during parenteral nutrition[J]. Asia Pac J Clin Nutr, 2014, 23(4): 545-554.
|
[6] |
陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则(2022版)[J]. 中华医学杂志, 2022, 102(10): 697-703.
|
[7] |
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations[J]. BMJ, 2008, 336(7650): 924-926.
|
[8] |
Berger MM, Shenkin A. Vitamins and trace elements: practical aspects of supplementation[J]. Nutrition, 2006, 22(9):952-955.
|
[9] |
任建安. 重视微量营养素的缺乏与诊治[J]. 中国实用外科杂志, 2010, 30(11): 912-913.
|
[10] |
武超, 王新颖, 刘思彤, 等. 多种维生素对腹部手术后患者氧化应激及过度炎性反应的影响[J/OL]. 中华损伤与修复杂志(电子版), 2013, 8(2): 30-33.
|
[11] |
中华医学会肠外肠内营养学分会. 中国成人患者肠外肠内营养临床应用指南(2023版) [J]. 中华医学杂志, 2023, 103(13): 946-974.
|
[12] |
陈莲珍, 王雨潇, 杨谨成, 等. 我国2006—2015年肠外营养处方中维生素使用的文献分析[J]. 中国药房, 2017, 28(17): 2326-2330.
|
[13] |
谢彦军, 吴世福, 田月洁, 等. 491例注射用脂溶性维生素严重不良反应分析[J]. 中国药物警戒, 2018, 15(3): 176-180.
|
[14] |
张美玉. 注射用辅料聚氧乙烯脱水山梨醇单油酸酯的研究进展[J]. 中国中药杂志, 2011, 36(14): 1910-1915.
|
[15] |
国家药典委员会. 中华人民共和国药典2020年版四部[M]. 北京:中国医药科技出版社, 2020: 809.
|
[16] |
Soni MG, Taylor SL, Greenberg NA, et al. Evaluation of the health aspects of methyl paraben: A review of the published literature[J]. Food Chem Toxicol, 2002, 40(10): 1335-1373.
|
[17] |
Koekkoek W, Hettinga K, de Vries J, et al. Micronutrient deficiencies in critical illness[J]. Clin Nutr, 2021, 40(6): 3780-3786.
|
[18] |
Dresen E, Notz Q, Menger J, et al. What the clinician needs to know about medical nutrition therapy in critically ill patients in 2023: A narrative review[J]. Nutr Clin Pract, 2023, 38(3): 479-498.
|
[19] |
Casaer MP, Bellomo R. Micronutrient deficiency in critical illness: An invisible foe?[J]. Intensive Care Med, 2019, 45(8): 1136-1139.
|
[20] |
Berger MM, Reintam-Blaser A, Calder PC, et al. Monitoring nutrition in the ICU[J]. Clin Nutr, 2019, 38(2): 584-593.
|
[21] |
Berger MM, Shenkin A, Revelly JP, et al. Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients[J]. Am J Clin Nutr, 2004, 80(2):410-416.
|
[22] |
Story DA, Ronco C, Bellomo R. Trace element and vitamin concentrations and losses in critically ill patients treated with continuous venovenous hemofiltration[J]. Crit Care Med, 1999, 27(1): 220-223.
|
[23] |
Forceville X, Vitoux D, Gauzit R, et al. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients[J]. Crit Care Med, 1998, 26(9): 1536-1544.
|
[24] |
Gibson GE, Hirsch JA, Fonzetti P, et al. Vitamin B1 (thiamine) and dementia[J]. Ann N Y Acad Sci, 2016, 1367(1): 21-30.
|
[25] |
Butt I, Ulloa N, Surapaneni BK, et al. Refeeding syndrome and non-alcoholic Wernicke’s encephalopathy in a middle-aged male initially presenting with gallstone pancreatitis: A clinical challenge[J]. Cureus, 2019, 11(7): e5156.
|
[26] |
Serin SO, Karaoren G, Okuturlar Y, et al. Thiamin and folic acid deficiency accompanied by resistant electrolyte imbalance in the re-feeding syndrome in an elderly patient[J]. Asia Pac J Clin Nutr, 2017, 26(2): 379-382.
|
[27] |
Sriram K, Lonchyna VA. Micronutrient supplementation in adult nutrition therapy: practical considerations[J]. JPEN J Parenter Enteral Nutr, 2009, 33(5): 548-562.
|
[28] |
Stefanowicz F, Gashut RA, Talwar D, et al. Assessment of plasma and red cell trace element concentrations, disease severity, and outcome in patients with critical illness[J]. J Crit Care, 2014, 29(2): 214-218.
|
[29] |
Thurnham DI, Northrop-Clewes CA. Inflammation and biomarkers of micronutrient status[J]. Curr Opin Clin Nutr Metab Care, 2016, 19(6): 458-463.
|
[30] |
Conway FJ, Talwar D, McMillan DC. The relationship between acute changes in the systemic inflammatory response and plasma ascorbic acid, alpha-tocopherol and lipid peroxidation after elective hip arthroplasty[J]. Clin Nutr, 2015, 34(4): 642-646.
|
[31] |
Koekkoek WA, van Zanten AR. Antioxidant vitamins and trace elements in critical illness[J]. Nutr Clin Pract, 2016, 31(4): 457-474.
|
[32] |
de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, et al. Vitamin C pharmacokinetics in critically ill patients: A randomized trial of four Ⅳ regimens[J]. Chest, 2018, 153(6):1368-1377.
|
[33] |
Fowler AA 3rd, Syed AA, Knowlson S, et al. PhaseⅠ safety trial of intravenous ascorbic acid in patients with severe sepsis[J]. J Transl Med, 2014, 12: 32.
|
[34] |
Rozemeijer S, Spoelstra-de Man A, Coenen S, et al. Estimating vitamin c status in critically ill patients with a novel point-of-care oxidation-reduction potential measurement[J]. Nutrients, 2019, 11(5): 1031.
|
[35] |
Berger MM, Oudemans-van Straaten HM. Vitamin C supplementation in the critically ill patient[J]. Curr Opin Clin Nutr Metab Care, 2015, 18(2): 193-201.
|
[36] |
Kuhn SO, Meissner K, Mayes LM, et al. Vitamin C in sepsis[J]. Curr Opin Anaesthesiol, 2018, 31(1): 55-60.
|
[37] |
Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ali randomized clinical trial[J]. JAMA, 2019, 322(13): 1261-1270.
|
[38] |
Lamontagne F, Masse MH, Menard J, et al. Intravenous vitamin C in adults with sepsis in the intensive care unit[J]. N Engl J Med, 2022, 386(25): 2387-2398.
|
[39] |
Lee ZY, Ortiz-Reyes L, Lew C, et al. Intravenous vitamin C monotherapy in critically ill patients: A systematic review and meta-analysis of randomized controlled trials with trial sequential analysis[J]. Ann Intensive Care, 2023, 13(1): 14.
|
[40] |
Liang B, Su J, Shao H, et al. The outcome of Ⅳ vitamin C therapy in patients with sepsis or septic shock: A meta-analysis of randomized controlled trials[J]. Crit Care, 2023, 27(1): 109.
|
[41] |
Amrein K, Oudemans-van Straaten HM, Berger MM. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D[J]. Intensive Care Med, 2018, 44(11): 1940-1944.
|
[42] |
Shokri-Mashhadi N, Aliyari A, Hajhashemy Z, et al. Is it time to reconsider the administration of thiamine alone or in combination with vitamin C in critically ill patients? A meta-analysis of clinical trial studies[J]. J Intensive Care, 2022, 10(1): 8.
|
[43] |
Kato T, Mizuno T, Nakanishi M, et al. Efficacy of ascorbic acid, thiamine, and hydrocortisone combination therapy: meta-analysis of randomized controlled trials[J]. In Vivo, 2023, 37(3): 1236-1245.
|
[44] |
Williams Roberson S, Nwosu S, Collar EM, et al. Association of vitamin C, thiamine, and hydrocortisone infusion with long-term cognitive, psychological, and functional outcomes in sepsis survivors: A secondary analysis of the vitamin C, thiamine, and steroids in sepsis randomized clinical trial[J]. JAMA Netw Open, 2023, 6(2): e230380.
|
[45] |
Douglas IS, Alapat PM, Corl KA, et al. Fluid response evaluation in sepsis hypotension and shock: A randomized clinical trial[J]. Chest, 2020, 158(4): 1431-1445.
|
[46] |
Gudivada KK, Kumar A, Shariff M, et al. Antioxidant micronutrient supplementation in critically ill adults: A systematic review with meta-analysis and trial sequential analysis[J]. Clin Nutr, 2021, 40(3): 740-750.
|
[47] |
Stoppe C, McDonald B, Meybohm P, et al. Effect of high-dose selenium on postoperative organ dysfunction and mortality in cardiac surgery patients: the SUSTAIN CSX randomized clinical trial[J]. JAMA Surg, 2023, 158(3): 235-244.
|
[48] |
Krzizek EC, Brix JM, Stöckl A, et al. Prevalence of micronutrient deficiency after bariatric surgery[J]. Obes Facts, 2021, 14(2): 197-204.
|
[49] |
Papamargaritis D, Aasheim ET, Sampson B, et al. Copper, selenium and zinc levels after bariatric surgery in patients recommended to take multivitamin-mineral supplementation[J]. J Trace Elem Med Biol, 2015, 31: 167-172.
|
[50] |
Parrott J, Frank L, Rabena R, et al. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the surgical weight loss patient 2016 update: micronutrients[J]. Surg Obes Relat Dis, 2017, 13(5): 727-741.
|
[51] |
O’Kane M, Parretti HM, Pinkney J, et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery-2020 update[J]. Obes Rev, 2020, 21(11): e13087.
|
[52] |
Mahawar KK, Reid A, Graham Y, et al. Oral vitamin B(12) supplementation after Roux-en-Y gastric bypass: A systematic review[J]. Obes Surg, 2018, 28(7): 1916-1923.
|
[53] |
Smelt H, van Loon S, Pouwels S, et al. Do specialized bariatric multivitamins lower deficiencies after sleeve gastrectomy? [J]. Obes Surg, 2020, 30(2): 427-438.
|
[54] |
Choi YJ, Choi IY, Jang W, et al. Gastrectomy, vitamin B12 supplementation and the risk of Parkinson’s disease: A nationwide cohort study[J]. Parkinsonism Relat Disord, 2021, 83: 15-21.
|
[55] |
Latenstein A, van Gerven R, Grevers F, et al. Micronutrient deficiencies and anaemia in patients after pancreatoduodenectomy[J]. Br J Surg, 2021, 108(2): e74-e75.
|
[56] |
Tabriz N, Uslar VN, Obonyo D, et al. Micronutritional status after pylorus preserving duodenopancreatectomy: analysis of data from a randomized controlled trial[J]. Sci Rep, 2021, 11(1): 18475.
|
[57] |
Moravvej Z, Baradaran Rahimi V, Azari A, et al. Changes in serum zinc and copper concentrations in patients with cardiovascular disease following cardiac surgery[J]. Physiol Rep, 2022, 10(19): e15483.
|
[58] |
Hou HT, Xue LG, Zhou JY, et al. Alteration of plasma trace elements magnesium, copper, zinc, iron and calcium during and after coronary artery bypass grafting surgery[J]. J Trace Elem Med Biol, 2020, 62: 126612.
|
[59] |
Michelson JD, Charlson MD. Vitamin D status in an elective orthopedic surgical population[J]. Foot Ankle Int, 2016, 37(2): 186-191.
|
[60] |
Khalooeifard R, Rahmani J, Tavanaei R, et al. The effect of vitamin D deficiency on outcomes of patients undergoing elective spinal fusion surgery: A systematic review and meta-analysis[J]. Int J Spine Surg, 2022, 16(1): 53-60.
|
[61] |
Houry M, Tohme J, Sleilaty G, et al. Effects of ferric carboxymaltose on hemoglobin level after cardiac surgery: A randomized controlled trial[J]. Anaesth Crit Care Pain Med, 2023, 42(1): 101171.
|
[62] |
Elhenawy AM, Meyer SR, Bagshaw SM, et al. Role of preoperative intravenous iron therapy to correct anemia before major surgery: A systematic review and meta-analysis[J]. Syst Rev, 2021, 10(1): 36.
|
[63] |
Hung KC, Lin YT, Chen KH, et al. The effect of perioperative vitamin C on postoperative analgesic consumption: A meta-analysis of randomized controlled trials[J]. Nutrients, 2020, 12(10): 3109.
|
[64] |
Seth I, Bulloch G, Seth N, et al. Effect of perioperative vitamin C on the incidence of complex regional pain syndrome: A systematic review and meta-analysis[J]. J Foot Ankle Surg, 2022, 61(4): 748-754.
|
[65] |
Shida A, Vizcaychipi M. Vitamin D: the 'immune cell mediator’ in burn critical care patients[J]. Burns, 2021, 47(5): 1216-1217.
|
[66] |
Garner KM, Zavala S, Pape KO, et al. A multicenter study analyzing the association of vitamin D deficiency and replacement with infectious outcomes in patients with burn injuries[J]. Burns, 2022, 48(6): 1319-1324.
|
[67] |
Rousseau AF, Foidart-Desalle M, Ledoux D, et al. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: A one-year pilot randomized controlled trial in adults with severe burns[J]. Burns, 2015, 41(2): 317-325.
|
[68] |
Uchida H, Hasegawa Y, Takahashi H, et al. 1α-dihydroxyvitamin D3 and retinoic acid increase nuclear vitamin D receptor expression in monocytic THP-1 cells[J]. Anticancer Res, 2016, 36(12): 6297-6301.
|
[69] |
Barbosa E, Faintuch J, Machado Moreira EA, et al. Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: A randomized, double-blind, placebo-controlled pilot study[J]. J Burn Care Res, 2009, 30(5): 859-866.
|
[70] |
中国抗癌协会肿瘤营养专业委员会, 国家市场监管重点实验室(肿瘤特医食品), 北京肿瘤学会肿瘤缓和医疗专业委员会. 注射用多种维生素(13)临床应用专家共识[J/OL]. 肿瘤代谢与营养电子杂志, 2022, 9(5): 581-593.
|
[71] |
Berger MM, Baines M, Raffoul W, et al. Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations[J]. Am J Clin Nutr, 2007, 85(5): 1293-1300.
|
[72] |
韩兆峰, 王甲汉, 李志清, 等. 重度烧伤患者中后期全身和局部创面中微量元素Fe、Cu、Zn、Se、Mn的变化[J]. 中华实验外科杂志, 2012, 29(3): 418-420.
|
[73] |
Chen LR, Yang BS, Chang CN, et al. Additional vitamin and mineral support for patients with severe burns: A nationwide experience from a catastrophic color-dust explosion event in taiwan[J]. Nutrients, 2018, 10(11): 1782.
|
[74] |
Kurmis R, Greenwood J, Aromataris E. Trace element supplementation following severe burn injury: A systematic review and meta-analysis[J]. J Burn Care Res, 2016, 37(3): 143-159.
|
[75] |
中华医学会肠外肠内营养学分会. 多种微量元素注射液临床应用中国专家共识(2021)[J/OL]. 肿瘤代谢与营养电子杂志, 2021, 8(4): 366-373.
|
[76] |
Berger MM, Shenkin A. Trace element requirements in critically ill burned patients[J]. J Trace Elem Med Biol, 2007, 21 Suppl 1∶ 44-48.
|
[77] |
Kilby K, Mathias H, Boisvenue L, et al. Micronutrient absorption and related outcomes in people with inflammatory bowel disease: A review[J]. Nutrients, 2019, 11(6): 1388.
|
[78] |
Hwang C, Ross V, Mahadevan U. Micronutrient deficiencies in inflammatory bowel disease: from A to zinc[J]. Inflamm Bowel Dis, 2012, 18(10): 1961-1981.
|
[79] |
Gold SL, Rabinowitz LG, Manning L, et al. High prevalence of malnutrition and micronutrient deficiencies in patients with inflammatory bowel disease early in disease course[J]. Inflamm Bowel Dis, 2023, 29(3): 423-429.
|
[80] |
Massironi S, Viganò C, Palermo A, et al. Inflammation and malnutrition in inflammatory bowel disease[J]. Lancet Gastroenterol Hepatol, 2023, 8(6): 579-590.
|
[81] |
Dragasevic S, Stankovic B, Kotur N, et al. Genetic aspects of micronutrients important for inflammatory bowel disease[J]. Life (Basel), 2022, 12(10):1623.
|
[82] |
Boccuzzi L, Infante M, Ricordi C. The potential therapeutic role of vitamin D in inflammatory bowel disease[J]. Eur Rev Med Pharmacol Sci, 2023, 27(10): 4678-4687.
|
[83] |
Gold SL, Manning L, Kohler D, et al. Micronutrients and their role in inflammatory bowel disease: function, assessment, supplementation, and impact on clinical outcomes including muscle health[J]. Inflamm Bowel Dis, 2023, 29(3): 487-501.
|
[84] |
Stein J, Hartmann F, Dignass AU. Diagnosis and management of iron deficiency anemia in patients with IBD[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(11): 599-610.
|
[85] |
Dignass AU, Gasche C, Bettenworth D, et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases[J]. J Crohns Colitis, 2015, 9(3): 211-222.
|
[86] |
Wu Y, Liu C, Dong W. Adjunctive therapeutic effects of micronutrient supplementation in inflammatory bowel disease[J]. Front Immunol, 2023, 14: 1143123.
|
[87] |
Gasche C, Berstad A, Befrits R, et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2007, 13(12): 1545-1553.
|
[88] |
Krzyżanowska P, Książyk J, Kocielińska-Kłos M, et al. Vitamin K status in patients with short bowel syndrome[J]. Clin Nutr, 2012, 31(6): 1015-1017.
|
[89] |
Braga CB, Vannucchi H, Freire CM, et al. Serum vitamins in adult patients with short bowel syndrome receiving intermittent parenteral nutrition[J]. JPEN J Parenter Enteral Nutr, 2011, 35(4): 493-498.
|
[90] |
Kumar PR, Fenton TR, Shaheen AA, et al. Prevalence of vitamin D deficiency and response to oral vitamin D supplementation in patients receiving home parenteral nutrition[J]. JPEN J Parenter Enteral Nutr, 2012, 36(4): 463-469.
|
[91] |
BOOTH CC. The metabolic effects of intestinal resection in man[J]. Postgrad Med J, 1961, 37(434): 725-739.
|
[92] |
Neil Livingstone Ward D.D.S., F.R.A.C.D.S., L.D.S[J]. Br Dent J, 1975, 139(9): 375.
|
[93] |
Bering J, DiBaise JK. Short bowel syndrome: complications and management[J]. Nutr Clin Pract, 2023, 38 Suppl 1: S46-S58.
|
[94] |
Wolman SL, Anderson GH, Marliss EB, et al. Zinc in total parenteral nutrition: requirements and metabolic effects[J]. Gastroenterology, 1979, 76(3): 458-467.
|
[95] |
Sandström B, Andersson H, Kivistö B, et al. Apparent small intestinal absorption of nitrogen and minerals from soy and meat-protein-based diets. A study on human ileostomy subjects[J]. J Nutr, 1986, 116(11): 2209-2218.
|
[96] |
Btaiche IF, Carver PL, Welch KB. Dosing and monitoring of trace elements in long-term home parenteral nutrition patients[J]. JPEN J Parenter Enteral Nutr, 2011, 35(6): 736-747.
|
[97] |
Han J, Guo X, Yu X, et al. 25-hydroxyvitamin D and total cancer incidence and mortality: A meta-analysis of prospective cohort studies[J]. Nutrients, 2019, 11(10): 2295.
|
[98] |
Zhang L, Zou H, Zhao Y, et al. Association between blood circulating vitamin D and colorectal cancer risk in Asian countries: A systematic review and dose-response meta-analysis[J]. BMJ Open, 2019, 9(12): e030513.
|
[99] |
Wu G, Xue M, Zhao Y, et al. Low circulating 25-hydroxyvitamin D level is associated with increased colorectal cancer mortality: A systematic review and dose-response meta-analysis[J]. Biosci Rep, 2020, 40(7): BSR20201008.
|
[100] |
Xu J, Yuan X, Tao J, et al. Association of circulating 25-hydroxyvitamin D levels with colorectal cancer: An updated meta-analysis[J]. J Nutr Sci Vitaminol (Tokyo), 2018, 64(6): 432-444.
|
[101] |
Yi Z, Wang L, Tu X. Effect of vitamin D deficiency on liver cancer risk: A systematic review and meta-analysis[J]. Asian Pac J Cancer Prev, 2021, 22(4): 991-997.
|
[102] |
Liu Y, Wang X, Sun X, et al. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies[J]. Medicine (Baltimore), 2018, 97(13): e0114.
|
[103] |
Song D, Deng Y, Liu K, et al. Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: A dose-response meta-analysis of observational studies[J]. Aging (Albany NY), 2019, 11(24): 12708-12732.
|
[104] |
Hu K, Callen DF, Li J, et al. Circulating vitamin D and overall survival in breast cancer patients: A dose-response meta-analysis of cohort studies[J]. Integr Cancer Ther, 2018, 17(2): 217-225.
|
[105] |
Zhao J, Wang H, Zhang Z, et al. Vitamin D deficiency as a risk factor for thyroid cancer: A meta-analysis of case-control studies[J]. Nutrition, 2019, 57: 5-11.
|
[106] |
Qian M, Lin J, Fu R, et al. The role of vitamin D intake on the prognosis and incidence of lung cancer: A systematic review and meta-analysis[J]. J Nutr Sci Vitaminol (Tokyo), 2021, 67(5): 273-282.
|
[107] |
Ito Y, Honda A, Kurokawa M. Impact of vitamin D level at diagnosis and transplantation on the prognosis of hematological malignancy: A meta-analysis[J]. Blood Adv, 2022, 6(5): 1499-1511.
|
[108] |
Song ZY, Yao Q, Zhuo Z, et al. Circulating vitamin D level and mortality in prostate cancer patients: A dose-response meta-analysis[J]. Endocr Connect, 2018, 7(12): R294-R303.
|
[109] |
Ren X, Xu P, Zhang D, et al. Association of folate intake and plasma folate level with the risk of breast cancer: A dose-response meta-analysis of observational studies[J]. Aging (Albany NY), 2020, 12(21): 21355-21375.
|
[110] |
Zhao Z, Yin Z, Zhang C. Lifestyle interventions can reduce the risk of Barrett’s esophagus: A systematic review and meta-analysis of 62 studies involving 250, 157 participants[J]. Cancer Med, 2021, 10(15): 5297-5320.
|
[111] |
Li Y, Lin Q, Lu X, et al. Post-diagnosis use of antioxidant vitamin supplements and breast cancer prognosis: A systematic review and meta-analysis[J]. Clin Breast Cancer, 2021, 21(6): 477-485.
|
[112] |
Mainville L, Smilga AS, Fortin PR. Effect of nicotinamide in skin cancer and actinic keratoses chemoprophylaxis, and adverse effects related to nicotinamide: A systematic review and meta-analysis[J]. J Cutan Med Surg, 2022, 26(3): 297-308.
|
[113] |
Miao H, Li R, Chen D, et al. Protective effects of vitamin E on chemotherapy-induced peripheral neuropathy: A meta-analysis of randomized controlled trials[J]. Ann Nutr Metab, 2021, 77(3): 127-137.
|
[114] |
Chen XB, Wei YH, Chen XK, et al. Manganese levels and hepatocellular carcinoma: A systematic review and meta-analysis based on Asian cohort[J]. Medicine (Baltimore), 2019, 98(32): e16748.
|
[115] |
Sayehmiri K, Azami M, Mohammadi Y, et al. The association between selenium and prostate cancer: A systematic review and meta-analysis[J]. Asian Pac J Cancer Prev, 2018, 19(6): 1431-1437.
|
[116] |
Zhang X, Yang Q. Association between serum copper levels and lung cancer risk: A meta-analysis[J]. J Int Med Res, 2018, 46(12): 4863-4873.
|
[117] |
Dickson EA, Ng O, Keeler BD, et al. The ICaRAS randomised controlled trial: intravenous iron to treat anaemia in people with advanced cancer-feasibility of recruitment, intervention and delivery[J]. Palliat Med, 2023, 37(3): 372-383.
|
[118] |
Gluszak C, de Vries-Brilland M, Seegers V, et al. Impact of iron-deficiency management on quality of life in patients with cancer: A prospective cohort study (CAMARA Study)[J]. Oncologist, 2022, 27(4): 328-333.
|
[119] |
Stokes CS, Krawczyk M, Reichel C, et al. Vitamin D deficiency is associated with mortality in patients with advanced liver cirrhosis[J]. Eur J Clin Invest, 2014, 44(2): 176-183.
|
[120] |
Llibre-Nieto G, Lira A, Vergara M, et al. Micronutrient deficiencies in patients with decompensated liver cirrhosis[J]. Nutrients, 2021, 13(4): 1249.
|
[121] |
Dou J, Xu W, Ye B, et al. Serum vitamin B12 levels as indicators of disease severity and mortality of patients with acute-on-chronic liver failure[J]. Clin Chim Acta, 2012, 413(23-24): 1809-1812.
|
[122] |
Bjelakovic M, Nikolova D, Bjelakovic G, et al. Vitamin D supplementation for chronic liver diseases in adults[J]. Cochrane Database Syst Rev, 2021, 8(8): CD011564.
|
[123] |
Zhou Q, Li L, Chen Y, et al. Vitamin D supplementation could reduce the risk of acute cellular rejection and infection in vitamin D deficient liver allograft recipients[J]. Int Immunopharmacol, 2019, 75: 105811.
|
[124] |
Mayr U, Fahrenkrog-Petersen L, Batres-Baires G, et al. Vitamin D deficiency is highly prevalent in critically ill patients and a risk factor for mortality: A prospective observational study comparing noncirrhotic patients and patients with cirrhosis[J]. J Intensive Care Med, 2020, 35(10): 992-1001.
|
[125] |
Himoto T, Masaki T. Current trends of essential trace elements in patients with chronic liver diseases[J]. Nutrients, 2020, 12(7): 2084.
|
[126] |
Kodama H, Tanaka M, Naito Y, et al. Japan’s Practical Guidelines for zinc deficiency with a particular focus on taste disorders, inflammatory bowel disease, and liver cirrhosis[J]. Int J Mol Sci, 2020, 21(8): 2941.
|
[127] |
Katayama K, Saito M, Kawaguchi T, et al. Effect of zinc on liver cirrhosis with hyperammonemia: A preliminary randomized, placebo-controlled double-blind trial[J]. Nutrition, 2014, 30(11-12): 1409-1414.
|
[128] |
李雪梅, 侯维, 黄沛力, 等. 慢加急性肝功能衰竭病人维生素B1的缺乏与补充[J]. 肠外与肠内营养, 2013, 20(2): 72-74.
|
[129] |
赵娟, 李娟, 于红卫, 等. 慢性乙型肝炎、肝硬化与慢加急性肝衰竭患者饮食摄入硒及血清硒水平的对比分析[J]. 临床肝胆病杂志, 2015, 31(7): 1103-1106.
|
[130] |
McMillan DC, Maguire D, Talwar D. Relationship between nutritional status and the systemic inflammatory response: micronutrients[J]. Proc Nutr Soc, 2019, 78(1): 56-67.
|
[131] |
Ziemińska M, Sieklucka B, Pawlak K. Vitamin K and D supplementation and bone health in chronic kidney disease-apart or together?[J]. Nutrients, 2021, 13(3): 809.
|
[132] |
Lundwall K, Jacobson SH, Jörneskog G, et al. Treating endothelial dysfunction with vitamin D in chronic kidney disease: A meta-analysis[J]. BMC Nephrol, 2018, 19(1): 247.
|
[133] |
He L, Zhou L, Zhao TY, et al. Effect of vitamin D on urinary albumin excretion in diabetic nephropathy patients: A meta-analysis of randomized controlled trials[J]. Iran J Kidney Dis, 2022, 16(5): 273-279.
|
[134] |
Zhang Y, Darssan D, Pascoe EM, et al. Vitamin D status and mortality risk among patients on dialysis: A systematic review and meta-analysis of observational studies[J]. Nephrol Dial Transplant, 2018, 33(10): 1742-1751.
|
[135] |
Lu Y, Wang Y, Sun Y, et al. Effects of active vitamin D on insulin resistance and islet β-cell function in non-diabetic chronic kidney disease patients: A randomized controlled study[J]. Int Urol Nephrol, 2022, 54(7): 1725-1732.
|
[136] |
Stathi D, Fountoulakis N, Panagiotou A, et al. Impact of treatment with active vitamin D calcitriol on bone turnover markers in people with type 2 diabetes and stage 3 chronic kidney disease[J]. Bone, 2023, 166: 116581.
|
[137] |
Krummel T, Ingwiller M, Keller N, et al. Effects of high-vs low-dose native vitamin D on albuminuria and the renin-angiotensin-aldosterone system: A randomized pilot study[J]. Int Urol Nephrol, 2022, 54(4): 895-905.
|
[138] |
Li L, Zheng X, Deng J, et al. Ferric citrate for the treatment of hyperphosphatemia and anemia in patients with chronic kidney disease: A meta-analysis of randomized clinical trials[J]. Ren Fail, 2022, 44(1): 1112-1122.
|
[139] |
Choi YJ, Noh Y, Shin S. Ferric citrate in the management of hyperphosphataemia and iron deficiency anaemia: A meta-analysis in patients with chronic kidney disease[J]. Br J Clin Pharmacol, 2021, 87(2): 414-426.
|
[140] |
Chen T, Deng Y, Gong R. Efficacy and safety of intravenous iron with different frequencies for renal anaemia: A systematic review and meta-analysis[J]. J Clin Pharm Ther, 2022, 47(6): 713-721.
|
[141] |
Hougen I, Collister D, Bourrier M, et al. Safety of intravenous iron in dialysis: A systematic review and meta-analysis[J]. Clin J Am Soc Nephrol, 2018, 13(3): 457-467.
|
[142] |
Ambrosy AP, von Haehling S, Kalra PR, et al. Safety and efficacy of intravenous ferric derisomaltose compared to iron sucrose for iron deficiency anemia in patients with chronic kidney disease with and without heart failure[J]. Am J Cardiol, 2021, 152: 138-145.
|
[143] |
Onken JE, Bregman DB, Harrington RA, et al. Ferric carboxymaltose in patients with iron-deficiency anemia and impaired renal function: the REPAIR-IDA trial[J]. Nephrol Dial Transplant, 2014, 29(4): 833-842.
|
[144] |
Berger MM, Broman M, Forni L, et al. Nutrients and micronutrients at risk during renal replacement therapy: A scoping review[J]. Curr Opin Crit Care, 2021, 27(4): 367-377.
|
[145] |
Schneider AG, Picard W, Honoré PM, et al. Amino acids and vitamins status during continuous renal replacement therapy: An ancillary prospective observational study of a randomised control trial[J]. Anaesth Crit Care Pain Med, 2021, 40(2): 100813.
|
[146] |
Ke G, Huang J, Zhu Y, et al. Effect of ascorbic acid on mineral and bone disorders in hemodialysis patients: A systematic review and meta-analysis[J]. Kidney Blood Press Res, 2018, 43(5): 1459-1471.
|
[147] |
Zhang Y, Ma T, Zhang P. Efficacy and safety of nicotinamide on phosphorus metabolism in hemodialysis patients: A systematic review and meta-analysis[J]. Medicine (Baltimore), 2018, 97(41): e12731.
|
[148] |
Wang Z, Zhu W, Xing Y, et al. B vitamins and prevention of cognitive decline and incident dementia: A systematic review and meta-analysis[J]. Nutr Rev, 2022, 80(4): 931-949.
|
[149] |
Li S, Guo Y, Men J, et al. The preventive efficacy of vitamin B supplements on the cognitive decline of elderly adults: A systematic review and meta-analysis[J]. BMC Geriatr, 2021, 21(1): 367.
|
[150] |
Dewansingh P, Melse-Boonstra A, Krijnen WP, et al. Supplemental protein from dairy products increases body weight and vitamin D improves physical performance in older adults: A systematic review and meta-analysis[J]. Nutr Res, 2018, 49: 1-22.
|
[151] |
Ling Y, Xu F, Xia X, et al. Vitamin D supplementation reduces the risk of fall in the vitamin D deficient elderly: An updated meta-analysis[J]. Clin Nutr, 2021, 40(11): 5531-5537.
|
[152] |
Roth A, Sattelmayer M, Schorderet C, et al. Effects of exercise training and dietary supplement on fat free mass and bone mass density during weight loss-a systematic review and meta-analysis[J]. F1000Res, 2022, 11: 8.
|
[153] |
Perna S. Is vitamin D supplementation useful for weight loss programs? A systematic review and meta-analysis of randomized controlled trials[J]. Medicina (Kaunas), 2019, 55(7): 368.
|
[154] |
Novin ZS, Ghavamzadeh S, Mehdizadeh A. The weight loss effects of branched chain amino acids and vitamin B6: A randomized controlled trial on obese and overweight women[J]. Int J Vitam Nutr Res, 2018, 88(1-2): 80-89.
|
[155] |
Wang Y, Duan L, Han X, et al. Changes in nutritional outcomes after sleeve gastrectomy: A systematic review and meta-analysis[J]. Obes Surg, 2022, 32(1): 103-114.
|
[156] |
Ha J, Kwon Y, Kwon JW, et al. Micronutrient status in bariatric surgery patients receiving postoperative supplementation per guidelines: insights from a systematic review and meta-analysis of longitudinal studies[J]. Obes Rev, 2021, 22(7): e13249.
|
[157] |
Shahmiri SS, Eghbali F, Ismaeil A, et al. Selenium deficiency after bariatric surgery, incidence and symptoms: A systematic review and meta-analysis[J]. Obes Surg, 2022, 32(5): 1719-1725.
|
[158] |
Li Z, Zhou X, Fu W. Vitamin D supplementation for the prevention of vitamin D deficiency after bariatric surgery: A systematic review and meta-analysis[J]. Eur J Clin Nutr, 2018, 72(8): 1061-1070.
|
[159] |
Kwon Y, Ha J, Lee YH, et al. Comparative risk of anemia and related micronutrient deficiencies after Roux-en-Y gastric bypass and sleeve gastrectomy in patients with obesity: An updated meta-analysis of randomized controlled trials[J]. Obes Rev, 2022, 23(4): e13419.
|
[160] |
Nunes R, Santos-Sousa H, Vieira S, et al. Vitamin B complex deficiency after Roux-en-Y gastric bypass and sleeve gastrectomy-a systematic review and meta-analysis[J]. Obes Surg, 2022, 32(3): 873-891.
|
[161] |
Bogden JD, Baker H, Frank O, et al. Micronutrient status and human immunodeficiency virus (HIV) infection[J]. Ann N Y Acad Sci, 1990, 587: 189-195.
|
[162] |
Semba RD, Tang AM. Micronutrients and the pathogenesis of human immunodeficiency virus infection[J]. Br J Nutr, 1999, 81(3): 181-189.
|
[163] |
Tang AM, Graham NM, Saah AJ. Effects of micronutrient intake on survival in human immunodeficiency virus type 1 infection[J]. Am J Epidemiol, 1996, 143(12): 1244-1256.
|
[164] |
Singhal N, Austin J. A clinical review of micronutrients in HIV infection[J]. J Int Assoc Physicians AIDS Care (Chic), 2002, 1(2): 63-75.
|
[165] |
Kruzich LA, Marquis GS, Carriquiry AL, et al. US youths in the early stages of HIV disease have low intakes of some micronutrients important for optimal immune function[J]. J Am Diet Assoc, 2004, 104(7): 1095-1101.
|
[166] |
Fufa H, Umeta M, Taffesse S, et al. Nutritional and immunological status and their associations among HIV-infected adults in Addis Ababa, Ethiopia[J]. Food Nutr Bull, 2009, 30(3): 227-232.
|
[167] |
Jiang S, He J, Zhao X, et al. The effect of multiple micronutrient supplementation on mortality and morbidity of HIV-infected adults: A meta-analysis of randomized controlled trials[J]. J Nutr Sci Vitaminol (Tokyo), 2012, 58(2): 105-112.
|
[168] |
Baum MK, Campa A, Lai S, et al. Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: A randomized clinical trial[J]. JAMA, 2013, 310(20): 2154-2163.
|
[169] |
Carter GM, Indyk D, Johnson M, et al. Micronutrients in HIV: A Bayesian meta-analysis[J]. PLoS One, 2015, 10(4): e0120113.
|
[170] |
Wobeser WL, McBane JE, Balfour L, et al. A randomized control trial of high-dose micronutrient-antioxidant supplementation in healthy persons with untreated HIV infection[J]. PLoS One, 2022, 17(7): e0270590.
|
[171] |
Olisah VO, Abiola T, Okpataku CI, et al. The impact of 6-month micronutrient supplementation on viral, immunological, and mental health profile of a cohort of highly active antiretroviral therapy-naive HIV-positive patients in Northern Nigeria[J]. Niger Med J, 2019, 60(3): 149-155.
|
[172] |
Villamor E, Mugusi F, Urassa W, et al. A trial of the effect of micronutrient supplementation on treatment outcome, T cell counts, morbidity, and mortality in adults with pulmonary tuberculosis[J]. J Infect Dis, 2008, 197(11): 1499-1505.
|
[173] |
Karyadi E, West CE, Schultink W, et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status[J]. Am J Clin Nutr, 2002, 75(4): 720-727.
|
[174] |
Lawson L, Thacher TD, Yassin MA, et al. Randomized controlled trial of zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis[J]. Trop Med Int Health, 2010, 15(12): 1481-1490.
|
[175] |
Seyedrezazadeh E, Ostadrahimi A, Mahboob S, et al. Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients[J]. Respirology, 2008, 13(2): 294-298.
|
[176] |
Ghulam H, Kadri SM, Manzoor A, et al. Status of zinc in pulmonary tuberculosis[J]. J Infect Dev Ctries, 2009, 3(5): 365-368.
|
[177] |
Machmud PB, Djuwita R, Gayatri D, et al. Influence of micronutrient consumption by tuberculosis patients on the sputum conversion rate: A systematic review and meta-analysis study[J]. Acta Med Indones, 2020, 52(2): 118-124.
|
[178] |
Xiong K, Wang J, Zhang J, et al. Association of dietary micronutrient intake with pulmonary tuberculosis treatment failure rate: acohort study[J]. Nutrients, 2020, 12(9): 2491.
|
[179] |
Zolfaghari B, Ghanbari M, Musavi H, et al. Investigation of zinc supplement impact on the serum biochemical parameters in pulmonary tuberculosis: A double blinded placebo control trial[J]. Rep Biochem Mol Biol, 2021, 10(2): 173-182.
|
[180] |
Kafle S, Basnet AK, Karki K, et al. Association of vitamin D deficiency with pulmonary tuberculosis: A systematic review and meta-analysis[J]. Cureus, 2021, 13(9): e17883.
|
[181] |
Wagnew F, Alene KA, Eshetie S, et al. Effects of zinc and vitamin A supplementation on prognostic markers and treatment outcomes of adults with pulmonary tuberculosis: A systematic review and meta-analysis[J]. BMJ Glob Health, 2022, 7(9): e008625.
|
[182] |
Boullata JI, Gilbert K, Sacks G, et al. A. S. P. E. N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing[J]. JPEN J Parenter Enteral Nutr, 2014, 38(3): 334-377.
|
[183] |
陈莲珍, 何铁强. 肠外营养液规范化配置和稳定性探讨[J]. 中国药房, 2012, 23(33): 3155-3157.
|
[184] |
Dupertuis YM, Morch A, Fathi M, et al. Physical characteristics of total parenteral nutrition bags significantly affect the stability of vitamins C and B1: A controlled prospective study[J]. JPEN J Parenter Enteral Nutr, 2002, 26(5): 310-316.
|
[185] |
Allwood MC, Kearney MC. Compatibility and stability of additives in parenteral nutrition admixtures[J]. Nutrition, 1998, 14(9): 697-706.
|
[186] |
Allwood MC, Martin HJ. The photodegradation of vitamins A and E in parenteral nutrition mixtures during infusion[J]. Clin Nutr, 2000, 19(5): 339-342.
|
[187] |
Billion-Rey F, Guillaumont M, Frederich A, et al. Stability of fat-soluble vitamins A (retinol palmitate), E (tocopherol acetate), and K1 (phylloquinone) in total parenteral nutrition at home[J]. JPEN J Parenter Enteral Nutr, 1993, 17(1): 56-60.
|
[188] |
陈莲珍, 曾艳. 全肠外营养液配置稳定性的影响因素和应对措施[J]. 临床药物治疗杂志, 2009, 7(6): 37-41.
|
[189] |
中华医学会肠外肠内营养学分会, 北京医学会肠外肠内营养学分会. 维生素制剂临床应用专家共识[J]. 中华外科杂志, 2015, 53(7): 481-487.
|