切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 161 -182. doi: 10.3877/cma.j.issn.1674-0793.2024.03.001

指南

中国成人患者微营养素临床应用指南(2024版)
中华医学会肠外肠内营养学分会   
  1. 1. 北京医院普外科 国家老年医学中心 中国医学科学院老年医学研究院,北京 100730
    2. 重庆市人民医院普外科,重庆 400037
    3. 中国医学科学院 北京协和医学院 北京协和医院临床营养科,北京 100730
  • 收稿日期:2024-03-20 出版日期:2024-06-01
  • 基金资助:
    中央高水平医院临床科研业务费(BJ-2023-152); 国家重点研发计划(2022YFA1304004、2022YFC2010101); 国家自然科学基金资助项目(72074222)

Guidelines for clinical application of micronutrients in Chinese adult patients (2024 edition)

Chinese Society of Parenteral and Enteral Nutrition (CSPEN)   

  1. 1. Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
    2. Department of General Surgery, Chongqing General Hospital, Chongqing 400037, China
    3. Department of Clinical Nutrition, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, China
  • Received:2024-03-20 Published:2024-06-01
引用本文:

中华医学会肠外肠内营养学分会. 中国成人患者微营养素临床应用指南(2024版)[J]. 中华普通外科学文献(电子版), 2024, 18(03): 161-182.

Chinese Society of Parenteral and Enteral Nutrition (CSPEN). Guidelines for clinical application of micronutrients in Chinese adult patients (2024 edition)[J]. Chinese Archives of General Surgery(Electronic Edition), 2024, 18(03): 161-182.

微营养素包括微量元素和维生素,是人体代谢中不可或缺的营养素。临床上多数需要营养治疗的患者,因多种原因存在不同程度的微营养素缺乏,导致疾病进展并影响临床结局。为进一步规范医学营养治疗中的微营养素的应用,由中华医学会肠外肠内营养学分会组织国内近百位相关领域的专家,基于现有的循证医学证据,围绕微营养素的作用和应用剂量,针对临床常见疾病状态如重症、手术、烧伤、炎性肠病、短肠综合征、恶性肿瘤、慢性肝(肾)疾病、老年共病、减重营养管理和慢性感染等维生素和微量元素的使用情况等,最终提出13个问题、30条推荐意见,旨在为成人患者肠外肠内营养的临床规范应用提供参考。

Micronutrients, including trace elements and vitamins, are essential nutrients in human metabolism. The majority of patients who need nutritional therapy have different levels of micronutrient deficiency for various reasons, which can lead to disease progression and affect clinical outcomes. In order to further standardize the application of micronutrients in medical nutrition therapy, nearly 100 experts in related fields were organized by the Chinese Society of Parenteral and Enteral Nutrition (CSPEN) to elaborate on the role and dosage of micronutrients based on the existing evidence-based medical evidence in common clinical conditions such as severe illness, surgery, burns, inflammatory bowel disease, short bowel disease, malignant tumors, chronic liver and kidney disease, elderly comorbidity, weight loss and chronic infection. Finally, 13 questions and 30 recommendations were put forward to provide reference for clinical standard application of parenteral and enteral nutrition in adult patients.

表1 微量元素和维生素的临床监测、推荐应用剂量及注意事项
微营养素 监测与评估 推荐剂量(/d) 注意事项
重症患者存在胰岛素抵抗和高血糖时,可使用静脉注射铬尝试减少胰岛素用量 EN:≥35 μg/1 500 kcal;
PN:≥10 μg
根据胰岛素抵抗水平考虑存在铬缺乏时,可予以静脉途径补充铬(200~250 μg/d,连用2周);重症患者存在胰岛素抵抗,需要剂量为3~20 μg/h的铬,静脉注射10 h、≤4 d
心肌病怀疑钴中毒时,可能需要测定钴 EN应通过补充维生素B12的方式进行钴补充;只要补充了维生素B12,则PN无需额外单独补充钴制剂
减肥手术后或其他非十二指肠腹部手术后;病因不明的神经病变;严重烧伤者;连续2周以上的肾脏替代治疗;通过空肠造口管进行家庭肠内营养(HEN)的患者;长期接受PN者;以上患者应每6~12个月测定一次铜含量,同时需测定CRP以进一步明确铜水平 EN:1~3 mg/1 500 kcal;
PN:0.3~0.5 mg
当血浆铜浓度<12 μmol/L且CRP>20 mg/L时,需补充铜;当血浆铜浓度<8 mmol/L伴或不伴CRP升高时,应予以补充。慢性疾病可首先考虑口服;严重铜缺乏时,应首选静脉补充,以4~8 mg/d缓慢输注
怀疑氟中毒时应进行血液检测 EN:≤3 mg/1 500 kcal;
PN:0~1 mg
氟化物中毒时,应采取生命功能支持和电解质监测对症治疗;除控制过量氟暴露的来源外,尚无治疗氟骨症的方法
甲状腺疾病高发人群、碘缺乏症高发地区者、长期暴露于聚维酮碘(PVPeI)消毒者,应评估碘水平 EN:150~300 μg/1 500 kcal;PN:130 μg 碘缺乏时应通过口服或肠内途径补充(约300~ 600 μg/d),或通过肌肉注射;在急性严重碘缺乏症中,可以通过静脉注射碘化钠溶液补充碘
贫血和持续严重疲劳者、疑似铁缺乏和过载者均应检测血浆铁、转铁蛋白、转铁蛋白饱和度、铁蛋白、CRP、铁调素以及红细胞形态等一系列指标 EN:18~30 mg/1 500 kcal的铁;PN:≥1 mg,或每隔一段时间予以单独补充等量铁 若补充量超过基础剂量方可纠正铁缺乏,应单次静脉注射;经低铁调素水平证明铁缺乏的重症患者,应以羧基麦芽糖铁形式补充1 g铁
怀疑锰过量或中毒时,尤其是长期PN(>30 d;>55 μg/d)并出现肝功能受损或缺铁时,应当检测锰的含量,间隔至少40 d(生物半衰期) EN:2~3 mg/1 500 kcal;
安全范围:≤6 mg;PN: 55 μg
当全血或血清中锰含量超过实验室正常参考范围上限2倍时,应予以处理;锰中毒可以通过将锰从PN混合物中去除、螯合疗法或缺铁时补充铁来治疗
怀疑钼缺乏时才应测定血中钼、尿液中亚硫酸盐、次黄嘌呤、黄嘌呤和血浆尿酸的浓度 EN:50~250 μg/1 500 kcal;PN:19~25 μg 可用四硫代钼酸盐治疗肝豆状核变性(Wilson病)中的铜超载
所有可能接受PN>2周或即将开始HPN的患者应在开始时即测定血浆硒;并根据需要决定是否需要复测,并应同时测定CRP和白蛋白水平 EN:50~150 μg/1 500 kcal;
PN:60~100 μg
血浆硒<0.4 μmol/L(<32 μg/L)时应立刻予以补充,初始剂量为100 μg/d(肠内或静脉注射),剂量可能高达400 μg/d,持续至少7~10 d后再复查
胃肠道和(或)皮肤过多丢失锌的患者;开始启动长期PN时应测定血浆锌;长期PN的患者应每6~12个月测定血浆锌。需要同时测定CRP和白蛋白水平 EN:≥10 mg/1 500 kcal;
PN:3~5 mg(无额外丢失锌时)
胃肠道丢失锌(瘘管、造口和腹泻)而接受PN的患者,每天通过静脉注射最多可补充12 mg;严重烧伤(烧伤面积>20%)的患者可通过静脉注射锌30~35 mg/d,持续2~3周;在获得性锌缺乏的情况下,可每天补充0.5~1.0 mg/kg的锌(二价锌离子),连续口服3~4个月;肠病性肢端皮炎患者可终身补充3 mg/kg的锌(二价锌离子)
维生素B1(硫胺素) 心肌病和长期服用利尿剂者;长期营养支持和减肥手术后;再喂养综合征等,应测量红细胞或全血中二磷酸硫胺素(ThDP)的含量 EN:1.5~3.0 mg/1 500 kcal;PN:≥2.5 mg 急诊或重症患者,入院后应立即补充维生素B1(100~300 mg/d,静脉注射),连用3~4 d;入院前进食量减少或饮酒量过多者,应通过口服或静脉注射补充维生素B1(100~300 mg/d)
维生素B2(核黄素) 怀疑维生素B2缺乏时,可通过红细胞中的谷胱甘肽还原酶活性来评估 EN:≥1.2 mg/1 500 kcal;
PN:3.6~5.0 mg
维生素B2缺乏时,可口服(5~10 mg/d)或静脉注射核黄素(160 mg,连用4 d);脱氢酶缺乏症(MADD)的患者可补充维生素B2(50~200 mg/d)
维生素B3(维生素PP、烟酸、烟酰胺) 腹泻、皮炎和痴呆等,可检测血液或组织中烟酰胺腺嘌呤二核苷酸(NAD)水平 EN:18~40 mg/1 500 kcal;PN:≥40 mg 当有维生素B3缺乏的风险病史和(或)存在体征或症状进而怀疑存在维生素B3缺乏时,可能需要补充更高剂量
维生素B5(泛酸、D-泛醇) 结合神经症状决定是否检测血液维生素B5水平 EN:≥5 mg/1 500 kcal;
PN:≥15 mg
无典型神经系统症状时,维生素B5可与其他B族维生素一起服用
维生素B6(吡哆醇、吡哆醛、吡哆胺) 有维生素B6缺乏表现时,应测量血浆或红细胞磷酸吡哆醛(PLP)水平 EN:≥1.5 mg/1 500 kcal;
PN:4~6 mg
异烟肼过量或乙二醇中毒时,应予以大剂量维生素B6治疗
维生素B7(生物素) 直接测量血和尿中的维生素B7,并通过测定生物素酶活性来完善 EN:≥30 μg/1 500 kcal;
PN:60 μg
哺乳期母亲需口服(≥35 μg/d);接受肾替代治疗的患者可额外补充;根据肠道功能,可通过口服、肠内或静脉给予维生素B7
维生素B9(叶酸) 大细胞性贫血或有营养不良风险者应在首次就诊时评估维生素B9水平;补充3个月后再次评估 EN:330~400 μg DFE/1 500 kcal;
PN:400~600 μg
饮食不足或长期血液透析者,可口服叶酸(1.5 mg/d);口服治疗无效或不耐受者,可给予叶酸(0.1 mg/d)皮下注射、静脉注射或肌肉注射
维生素B12(钴胺素) 所有贫血、孤立性大细胞增多症、多发性神经病、神经退行性疾病或精神病的患者应监测维生素B12;自身免疫性疾病或舌炎、贫血和神经病变者,无论维生素B12水平如何,应监测抗内在因子抗体(抗IFAB) EN:≥2.5 μg/1 500 kcal;
PN:≥5 μg
哺乳期应口服(≥2.8 μg/d);维生素B12吸收受损的患者应终身服用补充剂(350 μg/d),或每1~3个月肌肉注射1 000~2 000 μg;若表现为急性缺乏临床症状、抗IFAB阳性、有全胃切除术史或持续消化道不良疾病者,应采用肌肉注射途径,初始予以高剂量维生素B12(1 000 μg,1次/2 d),连用2周(或1次/d,连用5 d)
维生素A(视黄醇) 消化道吸收不良的患者应测定血清视黄醇和视黄酸酯 EN:900~1 500 μg RE/1 500 kcal;
PN:800~1 100 μg RE
脂肪吸收不良时,可以口服维生素A
维生素C(抗坏血酸) 坏血病或长期摄入不足的患者,应监测血浆维生素C浓度 EN:≥100 mg/1 500 kcal;
PN:100~200 mg
慢性氧化应激状态(糖尿病、心力衰竭、严重COPD和长期透析)或消化不良的患者,可口服维生素C(200~500 mg/d);重症患者可适当增加用量
维生素D 存在维生素D消耗或缺乏风险的患者,测定血清25-(OH)D水平 EN:≥1000 U(25 μg)/1 500 kcal;PN:≥200 U(5 μg) 既往缺乏复发的患者,应服用4 000~5 000 U(100~125 μg)/d,为期2个月,目标25-(OH)D水平为40~60 μg/L
维生素E(生育酚) 囊性纤维化、a-β脂蛋白血症和TTP患者应测定维生素E EN:≥15 mg/1 500 kcal;
PN:≥9 mg
血浆a-生育酚水平<12 μmol/L时,应补充维生素E
维生素K(叶绿醌) 长期使用广谱抗生素和慢性肾病者,应通过生物标志物和饮食摄入情况来判断维生素K水平 EN:≥120 μg/1 500 kcal;
PN:150 μg维生素K1
接受抗凝治疗特别是华法林治疗者,应慎重评估补充维生素K的剂量和风险
[1]
中华医学会肠外肠内营养学分会. 多种TE制剂临床应用专家共识[J]. 中华外科杂志, 2018, 56(3): 168-176.
[2]
Berger MM, Shenkin A, Schweinlin A, et al. ESPEN micronutrient guideline[J]. Clin Nutr, 2022, 41(6): 1357-1424.
[3]
Blaauw R, Osland E, Sriram K, et al. Parenteral provision of micronutrients to adult patients: An expert consensus paper[J]. JPEN J Parenter Enteral Nutr, 2019, 43 Suppl 1: S5-S23.
[4]
McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult criticallyⅢ patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N.)[J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 159-211.
[5]
Osland EJ, Ali A, Isenring E, et al. Australasian Society for Parenteral and Enteral Nutrition Guidelines for supplementation of trace elements during parenteral nutrition[J]. Asia Pac J Clin Nutr, 2014, 23(4): 545-554.
[6]
陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则(2022版)[J]. 中华医学杂志, 2022, 102(10): 697-703.
[7]
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations[J]. BMJ, 2008, 336(7650): 924-926.
[8]
Berger MM, Shenkin A. Vitamins and trace elements: practical aspects of supplementation[J]. Nutrition, 2006, 22(9):952-955.
[9]
任建安. 重视微量营养素的缺乏与诊治[J]. 中国实用外科杂志, 2010, 30(11): 912-913.
[10]
武超, 王新颖, 刘思彤, 等. 多种维生素对腹部手术后患者氧化应激及过度炎性反应的影响[J/OL]. 中华损伤与修复杂志(电子版), 2013, 8(2): 30-33.
[11]
中华医学会肠外肠内营养学分会. 中国成人患者肠外肠内营养临床应用指南(2023版) [J]. 中华医学杂志, 2023, 103(13): 946-974.
[12]
陈莲珍, 王雨潇, 杨谨成, 等. 我国2006—2015年肠外营养处方中维生素使用的文献分析[J]. 中国药房, 2017, 28(17): 2326-2330.
[13]
谢彦军, 吴世福, 田月洁, 等. 491例注射用脂溶性维生素严重不良反应分析[J]. 中国药物警戒, 2018, 15(3): 176-180.
[14]
张美玉. 注射用辅料聚氧乙烯脱水山梨醇单油酸酯的研究进展[J]. 中国中药杂志, 2011, 36(14): 1910-1915.
[15]
国家药典委员会. 中华人民共和国药典2020年版四部[M]. 北京:中国医药科技出版社, 2020: 809.
[16]
Soni MG, Taylor SL, Greenberg NA, et al. Evaluation of the health aspects of methyl paraben: A review of the published literature[J]. Food Chem Toxicol, 2002, 40(10): 1335-1373.
[17]
Koekkoek W, Hettinga K, de Vries J, et al. Micronutrient deficiencies in critical illness[J]. Clin Nutr, 2021, 40(6): 3780-3786.
[18]
Dresen E, Notz Q, Menger J, et al. What the clinician needs to know about medical nutrition therapy in critically ill patients in 2023: A narrative review[J]. Nutr Clin Pract, 2023, 38(3): 479-498.
[19]
Casaer MP, Bellomo R. Micronutrient deficiency in critical illness: An invisible foe?[J]. Intensive Care Med, 2019, 45(8): 1136-1139.
[20]
Berger MM, Reintam-Blaser A, Calder PC, et al. Monitoring nutrition in the ICU[J]. Clin Nutr, 2019, 38(2): 584-593.
[21]
Berger MM, Shenkin A, Revelly JP, et al. Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients[J]. Am J Clin Nutr, 2004, 80(2):410-416.
[22]
Story DA, Ronco C, Bellomo R. Trace element and vitamin concentrations and losses in critically ill patients treated with continuous venovenous hemofiltration[J]. Crit Care Med, 1999, 27(1): 220-223.
[23]
Forceville X, Vitoux D, Gauzit R, et al. Selenium, systemic immune response syndrome, sepsis, and outcome in critically ill patients[J]. Crit Care Med, 1998, 26(9): 1536-1544.
[24]
Gibson GE, Hirsch JA, Fonzetti P, et al. Vitamin B1 (thiamine) and dementia[J]. Ann N Y Acad Sci, 2016, 1367(1): 21-30.
[25]
Butt I, Ulloa N, Surapaneni BK, et al. Refeeding syndrome and non-alcoholic Wernicke’s encephalopathy in a middle-aged male initially presenting with gallstone pancreatitis: A clinical challenge[J]. Cureus, 2019, 11(7): e5156.
[26]
Serin SO, Karaoren G, Okuturlar Y, et al. Thiamin and folic acid deficiency accompanied by resistant electrolyte imbalance in the re-feeding syndrome in an elderly patient[J]. Asia Pac J Clin Nutr, 2017, 26(2): 379-382.
[27]
Sriram K, Lonchyna VA. Micronutrient supplementation in adult nutrition therapy: practical considerations[J]. JPEN J Parenter Enteral Nutr, 2009, 33(5): 548-562.
[28]
Stefanowicz F, Gashut RA, Talwar D, et al. Assessment of plasma and red cell trace element concentrations, disease severity, and outcome in patients with critical illness[J]. J Crit Care, 2014, 29(2): 214-218.
[29]
Thurnham DI, Northrop-Clewes CA. Inflammation and biomarkers of micronutrient status[J]. Curr Opin Clin Nutr Metab Care, 2016, 19(6): 458-463.
[30]
Conway FJ, Talwar D, McMillan DC. The relationship between acute changes in the systemic inflammatory response and plasma ascorbic acid, alpha-tocopherol and lipid peroxidation after elective hip arthroplasty[J]. Clin Nutr, 2015, 34(4): 642-646.
[31]
Koekkoek WA, van Zanten AR. Antioxidant vitamins and trace elements in critical illness[J]. Nutr Clin Pract, 2016, 31(4): 457-474.
[32]
de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, et al. Vitamin C pharmacokinetics in critically ill patients: A randomized trial of four Ⅳ regimens[J]. Chest, 2018, 153(6):1368-1377.
[33]
Fowler AA 3rd, Syed AA, Knowlson S, et al. PhaseⅠ safety trial of intravenous ascorbic acid in patients with severe sepsis[J]. J Transl Med, 2014, 12: 32.
[34]
Rozemeijer S, Spoelstra-de Man A, Coenen S, et al. Estimating vitamin c status in critically ill patients with a novel point-of-care oxidation-reduction potential measurement[J]. Nutrients, 2019, 11(5): 1031.
[35]
Berger MM, Oudemans-van Straaten HM. Vitamin C supplementation in the critically ill patient[J]. Curr Opin Clin Nutr Metab Care, 2015, 18(2): 193-201.
[36]
Kuhn SO, Meissner K, Mayes LM, et al. Vitamin C in sepsis[J]. Curr Opin Anaesthesiol, 2018, 31(1): 55-60.
[37]
Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ali randomized clinical trial[J]. JAMA, 2019, 322(13): 1261-1270.
[38]
Lamontagne F, Masse MH, Menard J, et al. Intravenous vitamin C in adults with sepsis in the intensive care unit[J]. N Engl J Med, 2022, 386(25): 2387-2398.
[39]
Lee ZY, Ortiz-Reyes L, Lew C, et al. Intravenous vitamin C monotherapy in critically ill patients: A systematic review and meta-analysis of randomized controlled trials with trial sequential analysis[J]. Ann Intensive Care, 2023, 13(1): 14.
[40]
Liang B, Su J, Shao H, et al. The outcome of Ⅳ vitamin C therapy in patients with sepsis or septic shock: A meta-analysis of randomized controlled trials[J]. Crit Care, 2023, 27(1): 109.
[41]
Amrein K, Oudemans-van Straaten HM, Berger MM. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D[J]. Intensive Care Med, 2018, 44(11): 1940-1944.
[42]
Shokri-Mashhadi N, Aliyari A, Hajhashemy Z, et al. Is it time to reconsider the administration of thiamine alone or in combination with vitamin C in critically ill patients? A meta-analysis of clinical trial studies[J]. J Intensive Care, 2022, 10(1): 8.
[43]
Kato T, Mizuno T, Nakanishi M, et al. Efficacy of ascorbic acid, thiamine, and hydrocortisone combination therapy: meta-analysis of randomized controlled trials[J]. In Vivo, 2023, 37(3): 1236-1245.
[44]
Williams Roberson S, Nwosu S, Collar EM, et al. Association of vitamin C, thiamine, and hydrocortisone infusion with long-term cognitive, psychological, and functional outcomes in sepsis survivors: A secondary analysis of the vitamin C, thiamine, and steroids in sepsis randomized clinical trial[J]. JAMA Netw Open, 2023, 6(2): e230380.
[45]
Douglas IS, Alapat PM, Corl KA, et al. Fluid response evaluation in sepsis hypotension and shock: A randomized clinical trial[J]. Chest, 2020, 158(4): 1431-1445.
[46]
Gudivada KK, Kumar A, Shariff M, et al. Antioxidant micronutrient supplementation in critically ill adults: A systematic review with meta-analysis and trial sequential analysis[J]. Clin Nutr, 2021, 40(3): 740-750.
[47]
Stoppe C, McDonald B, Meybohm P, et al. Effect of high-dose selenium on postoperative organ dysfunction and mortality in cardiac surgery patients: the SUSTAIN CSX randomized clinical trial[J]. JAMA Surg, 2023, 158(3): 235-244.
[48]
Krzizek EC, Brix JM, Stöckl A, et al. Prevalence of micronutrient deficiency after bariatric surgery[J]. Obes Facts, 2021, 14(2): 197-204.
[49]
Papamargaritis D, Aasheim ET, Sampson B, et al. Copper, selenium and zinc levels after bariatric surgery in patients recommended to take multivitamin-mineral supplementation[J]. J Trace Elem Med Biol, 2015, 31: 167-172.
[50]
Parrott J, Frank L, Rabena R, et al. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the surgical weight loss patient 2016 update: micronutrients[J]. Surg Obes Relat Dis, 2017, 13(5): 727-741.
[51]
O’Kane M, Parretti HM, Pinkney J, et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery-2020 update[J]. Obes Rev, 2020, 21(11): e13087.
[52]
Mahawar KK, Reid A, Graham Y, et al. Oral vitamin B(12) supplementation after Roux-en-Y gastric bypass: A systematic review[J]. Obes Surg, 2018, 28(7): 1916-1923.
[53]
Smelt H, van Loon S, Pouwels S, et al. Do specialized bariatric multivitamins lower deficiencies after sleeve gastrectomy? [J]. Obes Surg, 2020, 30(2): 427-438.
[54]
Choi YJ, Choi IY, Jang W, et al. Gastrectomy, vitamin B12 supplementation and the risk of Parkinson’s disease: A nationwide cohort study[J]. Parkinsonism Relat Disord, 2021, 83: 15-21.
[55]
Latenstein A, van Gerven R, Grevers F, et al. Micronutrient deficiencies and anaemia in patients after pancreatoduodenectomy[J]. Br J Surg, 2021, 108(2): e74-e75.
[56]
Tabriz N, Uslar VN, Obonyo D, et al. Micronutritional status after pylorus preserving duodenopancreatectomy: analysis of data from a randomized controlled trial[J]. Sci Rep, 2021, 11(1): 18475.
[57]
Moravvej Z, Baradaran Rahimi V, Azari A, et al. Changes in serum zinc and copper concentrations in patients with cardiovascular disease following cardiac surgery[J]. Physiol Rep, 2022, 10(19): e15483.
[58]
Hou HT, Xue LG, Zhou JY, et al. Alteration of plasma trace elements magnesium, copper, zinc, iron and calcium during and after coronary artery bypass grafting surgery[J]. J Trace Elem Med Biol, 2020, 62: 126612.
[59]
Michelson JD, Charlson MD. Vitamin D status in an elective orthopedic surgical population[J]. Foot Ankle Int, 2016, 37(2): 186-191.
[60]
Khalooeifard R, Rahmani J, Tavanaei R, et al. The effect of vitamin D deficiency on outcomes of patients undergoing elective spinal fusion surgery: A systematic review and meta-analysis[J]. Int J Spine Surg, 2022, 16(1): 53-60.
[61]
Houry M, Tohme J, Sleilaty G, et al. Effects of ferric carboxymaltose on hemoglobin level after cardiac surgery: A randomized controlled trial[J]. Anaesth Crit Care Pain Med, 2023, 42(1): 101171.
[62]
Elhenawy AM, Meyer SR, Bagshaw SM, et al. Role of preoperative intravenous iron therapy to correct anemia before major surgery: A systematic review and meta-analysis[J]. Syst Rev, 2021, 10(1): 36.
[63]
Hung KC, Lin YT, Chen KH, et al. The effect of perioperative vitamin C on postoperative analgesic consumption: A meta-analysis of randomized controlled trials[J]. Nutrients, 2020, 12(10): 3109.
[64]
Seth I, Bulloch G, Seth N, et al. Effect of perioperative vitamin C on the incidence of complex regional pain syndrome: A systematic review and meta-analysis[J]. J Foot Ankle Surg, 2022, 61(4): 748-754.
[65]
Shida A, Vizcaychipi M. Vitamin D: the 'immune cell mediator’ in burn critical care patients[J]. Burns, 2021, 47(5): 1216-1217.
[66]
Garner KM, Zavala S, Pape KO, et al. A multicenter study analyzing the association of vitamin D deficiency and replacement with infectious outcomes in patients with burn injuries[J]. Burns, 2022, 48(6): 1319-1324.
[67]
Rousseau AF, Foidart-Desalle M, Ledoux D, et al. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: A one-year pilot randomized controlled trial in adults with severe burns[J]. Burns, 2015, 41(2): 317-325.
[68]
Uchida H, Hasegawa Y, Takahashi H, et al. 1α-dihydroxyvitamin D3 and retinoic acid increase nuclear vitamin D receptor expression in monocytic THP-1 cells[J]. Anticancer Res, 2016, 36(12): 6297-6301.
[69]
Barbosa E, Faintuch J, Machado Moreira EA, et al. Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: A randomized, double-blind, placebo-controlled pilot study[J]. J Burn Care Res, 2009, 30(5): 859-866.
[70]
中国抗癌协会肿瘤营养专业委员会, 国家市场监管重点实验室(肿瘤特医食品), 北京肿瘤学会肿瘤缓和医疗专业委员会. 注射用多种维生素(13)临床应用专家共识[J/OL]. 肿瘤代谢与营养电子杂志, 2022, 9(5): 581-593.
[71]
Berger MM, Baines M, Raffoul W, et al. Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations[J]. Am J Clin Nutr, 2007, 85(5): 1293-1300.
[72]
韩兆峰, 王甲汉, 李志清, 等. 重度烧伤患者中后期全身和局部创面中微量元素Fe、Cu、Zn、Se、Mn的变化[J]. 中华实验外科杂志, 2012, 29(3): 418-420.
[73]
Chen LR, Yang BS, Chang CN, et al. Additional vitamin and mineral support for patients with severe burns: A nationwide experience from a catastrophic color-dust explosion event in taiwan[J]. Nutrients, 2018, 10(11): 1782.
[74]
Kurmis R, Greenwood J, Aromataris E. Trace element supplementation following severe burn injury: A systematic review and meta-analysis[J]. J Burn Care Res, 2016, 37(3): 143-159.
[75]
中华医学会肠外肠内营养学分会. 多种微量元素注射液临床应用中国专家共识(2021)[J/OL]. 肿瘤代谢与营养电子杂志, 2021, 8(4): 366-373.
[76]
Berger MM, Shenkin A. Trace element requirements in critically ill burned patients[J]. J Trace Elem Med Biol, 2007, 21 Suppl 1∶ 44-48.
[77]
Kilby K, Mathias H, Boisvenue L, et al. Micronutrient absorption and related outcomes in people with inflammatory bowel disease: A review[J]. Nutrients, 2019, 11(6): 1388.
[78]
Hwang C, Ross V, Mahadevan U. Micronutrient deficiencies in inflammatory bowel disease: from A to zinc[J]. Inflamm Bowel Dis, 2012, 18(10): 1961-1981.
[79]
Gold SL, Rabinowitz LG, Manning L, et al. High prevalence of malnutrition and micronutrient deficiencies in patients with inflammatory bowel disease early in disease course[J]. Inflamm Bowel Dis, 2023, 29(3): 423-429.
[80]
Massironi S, Viganò C, Palermo A, et al. Inflammation and malnutrition in inflammatory bowel disease[J]. Lancet Gastroenterol Hepatol, 2023, 8(6): 579-590.
[81]
Dragasevic S, Stankovic B, Kotur N, et al. Genetic aspects of micronutrients important for inflammatory bowel disease[J]. Life (Basel), 2022, 12(10):1623.
[82]
Boccuzzi L, Infante M, Ricordi C. The potential therapeutic role of vitamin D in inflammatory bowel disease[J]. Eur Rev Med Pharmacol Sci, 2023, 27(10): 4678-4687.
[83]
Gold SL, Manning L, Kohler D, et al. Micronutrients and their role in inflammatory bowel disease: function, assessment, supplementation, and impact on clinical outcomes including muscle health[J]. Inflamm Bowel Dis, 2023, 29(3): 487-501.
[84]
Stein J, Hartmann F, Dignass AU. Diagnosis and management of iron deficiency anemia in patients with IBD[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(11): 599-610.
[85]
Dignass AU, Gasche C, Bettenworth D, et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases[J]. J Crohns Colitis, 2015, 9(3): 211-222.
[86]
Wu Y, Liu C, Dong W. Adjunctive therapeutic effects of micronutrient supplementation in inflammatory bowel disease[J]. Front Immunol, 2023, 14: 1143123.
[87]
Gasche C, Berstad A, Befrits R, et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2007, 13(12): 1545-1553.
[88]
Krzyżanowska P, Książyk J, Kocielińska-Kłos M, et al. Vitamin K status in patients with short bowel syndrome[J]. Clin Nutr, 2012, 31(6): 1015-1017.
[89]
Braga CB, Vannucchi H, Freire CM, et al. Serum vitamins in adult patients with short bowel syndrome receiving intermittent parenteral nutrition[J]. JPEN J Parenter Enteral Nutr, 2011, 35(4): 493-498.
[90]
Kumar PR, Fenton TR, Shaheen AA, et al. Prevalence of vitamin D deficiency and response to oral vitamin D supplementation in patients receiving home parenteral nutrition[J]. JPEN J Parenter Enteral Nutr, 2012, 36(4): 463-469.
[91]
BOOTH CC. The metabolic effects of intestinal resection in man[J]. Postgrad Med J, 1961, 37(434): 725-739.
[92]
Neil Livingstone Ward D.D.S., F.R.A.C.D.S., L.D.S[J]. Br Dent J, 1975, 139(9): 375.
[93]
Bering J, DiBaise JK. Short bowel syndrome: complications and management[J]. Nutr Clin Pract, 2023, 38 Suppl 1: S46-S58.
[94]
Wolman SL, Anderson GH, Marliss EB, et al. Zinc in total parenteral nutrition: requirements and metabolic effects[J]. Gastroenterology, 1979, 76(3): 458-467.
[95]
Sandström B, Andersson H, Kivistö B, et al. Apparent small intestinal absorption of nitrogen and minerals from soy and meat-protein-based diets. A study on human ileostomy subjects[J]. J Nutr, 1986, 116(11): 2209-2218.
[96]
Btaiche IF, Carver PL, Welch KB. Dosing and monitoring of trace elements in long-term home parenteral nutrition patients[J]. JPEN J Parenter Enteral Nutr, 2011, 35(6): 736-747.
[97]
Han J, Guo X, Yu X, et al. 25-hydroxyvitamin D and total cancer incidence and mortality: A meta-analysis of prospective cohort studies[J]. Nutrients, 2019, 11(10): 2295.
[98]
Zhang L, Zou H, Zhao Y, et al. Association between blood circulating vitamin D and colorectal cancer risk in Asian countries: A systematic review and dose-response meta-analysis[J]. BMJ Open, 2019, 9(12): e030513.
[99]
Wu G, Xue M, Zhao Y, et al. Low circulating 25-hydroxyvitamin D level is associated with increased colorectal cancer mortality: A systematic review and dose-response meta-analysis[J]. Biosci Rep, 2020, 40(7): BSR20201008.
[100]
Xu J, Yuan X, Tao J, et al. Association of circulating 25-hydroxyvitamin D levels with colorectal cancer: An updated meta-analysis[J]. J Nutr Sci Vitaminol (Tokyo), 2018, 64(6): 432-444.
[101]
Yi Z, Wang L, Tu X. Effect of vitamin D deficiency on liver cancer risk: A systematic review and meta-analysis[J]. Asian Pac J Cancer Prev, 2021, 22(4): 991-997.
[102]
Liu Y, Wang X, Sun X, et al. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies[J]. Medicine (Baltimore), 2018, 97(13): e0114.
[103]
Song D, Deng Y, Liu K, et al. Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: A dose-response meta-analysis of observational studies[J]. Aging (Albany NY), 2019, 11(24): 12708-12732.
[104]
Hu K, Callen DF, Li J, et al. Circulating vitamin D and overall survival in breast cancer patients: A dose-response meta-analysis of cohort studies[J]. Integr Cancer Ther, 2018, 17(2): 217-225.
[105]
Zhao J, Wang H, Zhang Z, et al. Vitamin D deficiency as a risk factor for thyroid cancer: A meta-analysis of case-control studies[J]. Nutrition, 2019, 57: 5-11.
[106]
Qian M, Lin J, Fu R, et al. The role of vitamin D intake on the prognosis and incidence of lung cancer: A systematic review and meta-analysis[J]. J Nutr Sci Vitaminol (Tokyo), 2021, 67(5): 273-282.
[107]
Ito Y, Honda A, Kurokawa M. Impact of vitamin D level at diagnosis and transplantation on the prognosis of hematological malignancy: A meta-analysis[J]. Blood Adv, 2022, 6(5): 1499-1511.
[108]
Song ZY, Yao Q, Zhuo Z, et al. Circulating vitamin D level and mortality in prostate cancer patients: A dose-response meta-analysis[J]. Endocr Connect, 2018, 7(12): R294-R303.
[109]
Ren X, Xu P, Zhang D, et al. Association of folate intake and plasma folate level with the risk of breast cancer: A dose-response meta-analysis of observational studies[J]. Aging (Albany NY), 2020, 12(21): 21355-21375.
[110]
Zhao Z, Yin Z, Zhang C. Lifestyle interventions can reduce the risk of Barrett’s esophagus: A systematic review and meta-analysis of 62 studies involving 250, 157 participants[J]. Cancer Med, 2021, 10(15): 5297-5320.
[111]
Li Y, Lin Q, Lu X, et al. Post-diagnosis use of antioxidant vitamin supplements and breast cancer prognosis: A systematic review and meta-analysis[J]. Clin Breast Cancer, 2021, 21(6): 477-485.
[112]
Mainville L, Smilga AS, Fortin PR. Effect of nicotinamide in skin cancer and actinic keratoses chemoprophylaxis, and adverse effects related to nicotinamide: A systematic review and meta-analysis[J]. J Cutan Med Surg, 2022, 26(3): 297-308.
[113]
Miao H, Li R, Chen D, et al. Protective effects of vitamin E on chemotherapy-induced peripheral neuropathy: A meta-analysis of randomized controlled trials[J]. Ann Nutr Metab, 2021, 77(3): 127-137.
[114]
Chen XB, Wei YH, Chen XK, et al. Manganese levels and hepatocellular carcinoma: A systematic review and meta-analysis based on Asian cohort[J]. Medicine (Baltimore), 2019, 98(32): e16748.
[115]
Sayehmiri K, Azami M, Mohammadi Y, et al. The association between selenium and prostate cancer: A systematic review and meta-analysis[J]. Asian Pac J Cancer Prev, 2018, 19(6): 1431-1437.
[116]
Zhang X, Yang Q. Association between serum copper levels and lung cancer risk: A meta-analysis[J]. J Int Med Res, 2018, 46(12): 4863-4873.
[117]
Dickson EA, Ng O, Keeler BD, et al. The ICaRAS randomised controlled trial: intravenous iron to treat anaemia in people with advanced cancer-feasibility of recruitment, intervention and delivery[J]. Palliat Med, 2023, 37(3): 372-383.
[118]
Gluszak C, de Vries-Brilland M, Seegers V, et al. Impact of iron-deficiency management on quality of life in patients with cancer: A prospective cohort study (CAMARA Study)[J]. Oncologist, 2022, 27(4): 328-333.
[119]
Stokes CS, Krawczyk M, Reichel C, et al. Vitamin D deficiency is associated with mortality in patients with advanced liver cirrhosis[J]. Eur J Clin Invest, 2014, 44(2): 176-183.
[120]
Llibre-Nieto G, Lira A, Vergara M, et al. Micronutrient deficiencies in patients with decompensated liver cirrhosis[J]. Nutrients, 2021, 13(4): 1249.
[121]
Dou J, Xu W, Ye B, et al. Serum vitamin B12 levels as indicators of disease severity and mortality of patients with acute-on-chronic liver failure[J]. Clin Chim Acta, 2012, 413(23-24): 1809-1812.
[122]
Bjelakovic M, Nikolova D, Bjelakovic G, et al. Vitamin D supplementation for chronic liver diseases in adults[J]. Cochrane Database Syst Rev, 2021, 8(8): CD011564.
[123]
Zhou Q, Li L, Chen Y, et al. Vitamin D supplementation could reduce the risk of acute cellular rejection and infection in vitamin D deficient liver allograft recipients[J]. Int Immunopharmacol, 2019, 75: 105811.
[124]
Mayr U, Fahrenkrog-Petersen L, Batres-Baires G, et al. Vitamin D deficiency is highly prevalent in critically ill patients and a risk factor for mortality: A prospective observational study comparing noncirrhotic patients and patients with cirrhosis[J]. J Intensive Care Med, 2020, 35(10): 992-1001.
[125]
Himoto T, Masaki T. Current trends of essential trace elements in patients with chronic liver diseases[J]. Nutrients, 2020, 12(7): 2084.
[126]
Kodama H, Tanaka M, Naito Y, et al. Japan’s Practical Guidelines for zinc deficiency with a particular focus on taste disorders, inflammatory bowel disease, and liver cirrhosis[J]. Int J Mol Sci, 2020, 21(8): 2941.
[127]
Katayama K, Saito M, Kawaguchi T, et al. Effect of zinc on liver cirrhosis with hyperammonemia: A preliminary randomized, placebo-controlled double-blind trial[J]. Nutrition, 2014, 30(11-12): 1409-1414.
[128]
李雪梅, 侯维, 黄沛力, 等. 慢加急性肝功能衰竭病人维生素B1的缺乏与补充[J]. 肠外与肠内营养, 2013, 20(2): 72-74.
[129]
赵娟, 李娟, 于红卫, 等. 慢性乙型肝炎、肝硬化与慢加急性肝衰竭患者饮食摄入硒及血清硒水平的对比分析[J]. 临床肝胆病杂志, 2015, 31(7): 1103-1106.
[130]
McMillan DC, Maguire D, Talwar D. Relationship between nutritional status and the systemic inflammatory response: micronutrients[J]. Proc Nutr Soc, 2019, 78(1): 56-67.
[131]
Ziemińska M, Sieklucka B, Pawlak K. Vitamin K and D supplementation and bone health in chronic kidney disease-apart or together?[J]. Nutrients, 2021, 13(3): 809.
[132]
Lundwall K, Jacobson SH, Jörneskog G, et al. Treating endothelial dysfunction with vitamin D in chronic kidney disease: A meta-analysis[J]. BMC Nephrol, 2018, 19(1): 247.
[133]
He L, Zhou L, Zhao TY, et al. Effect of vitamin D on urinary albumin excretion in diabetic nephropathy patients: A meta-analysis of randomized controlled trials[J]. Iran J Kidney Dis, 2022, 16(5): 273-279.
[134]
Zhang Y, Darssan D, Pascoe EM, et al. Vitamin D status and mortality risk among patients on dialysis: A systematic review and meta-analysis of observational studies[J]. Nephrol Dial Transplant, 2018, 33(10): 1742-1751.
[135]
Lu Y, Wang Y, Sun Y, et al. Effects of active vitamin D on insulin resistance and islet β-cell function in non-diabetic chronic kidney disease patients: A randomized controlled study[J]. Int Urol Nephrol, 2022, 54(7): 1725-1732.
[136]
Stathi D, Fountoulakis N, Panagiotou A, et al. Impact of treatment with active vitamin D calcitriol on bone turnover markers in people with type 2 diabetes and stage 3 chronic kidney disease[J]. Bone, 2023, 166: 116581.
[137]
Krummel T, Ingwiller M, Keller N, et al. Effects of high-vs low-dose native vitamin D on albuminuria and the renin-angiotensin-aldosterone system: A randomized pilot study[J]. Int Urol Nephrol, 2022, 54(4): 895-905.
[138]
Li L, Zheng X, Deng J, et al. Ferric citrate for the treatment of hyperphosphatemia and anemia in patients with chronic kidney disease: A meta-analysis of randomized clinical trials[J]. Ren Fail, 2022, 44(1): 1112-1122.
[139]
Choi YJ, Noh Y, Shin S. Ferric citrate in the management of hyperphosphataemia and iron deficiency anaemia: A meta-analysis in patients with chronic kidney disease[J]. Br J Clin Pharmacol, 2021, 87(2): 414-426.
[140]
Chen T, Deng Y, Gong R. Efficacy and safety of intravenous iron with different frequencies for renal anaemia: A systematic review and meta-analysis[J]. J Clin Pharm Ther, 2022, 47(6): 713-721.
[141]
Hougen I, Collister D, Bourrier M, et al. Safety of intravenous iron in dialysis: A systematic review and meta-analysis[J]. Clin J Am Soc Nephrol, 2018, 13(3): 457-467.
[142]
Ambrosy AP, von Haehling S, Kalra PR, et al. Safety and efficacy of intravenous ferric derisomaltose compared to iron sucrose for iron deficiency anemia in patients with chronic kidney disease with and without heart failure[J]. Am J Cardiol, 2021, 152: 138-145.
[143]
Onken JE, Bregman DB, Harrington RA, et al. Ferric carboxymaltose in patients with iron-deficiency anemia and impaired renal function: the REPAIR-IDA trial[J]. Nephrol Dial Transplant, 2014, 29(4): 833-842.
[144]
Berger MM, Broman M, Forni L, et al. Nutrients and micronutrients at risk during renal replacement therapy: A scoping review[J]. Curr Opin Crit Care, 2021, 27(4): 367-377.
[145]
Schneider AG, Picard W, Honoré PM, et al. Amino acids and vitamins status during continuous renal replacement therapy: An ancillary prospective observational study of a randomised control trial[J]. Anaesth Crit Care Pain Med, 2021, 40(2): 100813.
[146]
Ke G, Huang J, Zhu Y, et al. Effect of ascorbic acid on mineral and bone disorders in hemodialysis patients: A systematic review and meta-analysis[J]. Kidney Blood Press Res, 2018, 43(5): 1459-1471.
[147]
Zhang Y, Ma T, Zhang P. Efficacy and safety of nicotinamide on phosphorus metabolism in hemodialysis patients: A systematic review and meta-analysis[J]. Medicine (Baltimore), 2018, 97(41): e12731.
[148]
Wang Z, Zhu W, Xing Y, et al. B vitamins and prevention of cognitive decline and incident dementia: A systematic review and meta-analysis[J]. Nutr Rev, 2022, 80(4): 931-949.
[149]
Li S, Guo Y, Men J, et al. The preventive efficacy of vitamin B supplements on the cognitive decline of elderly adults: A systematic review and meta-analysis[J]. BMC Geriatr, 2021, 21(1): 367.
[150]
Dewansingh P, Melse-Boonstra A, Krijnen WP, et al. Supplemental protein from dairy products increases body weight and vitamin D improves physical performance in older adults: A systematic review and meta-analysis[J]. Nutr Res, 2018, 49: 1-22.
[151]
Ling Y, Xu F, Xia X, et al. Vitamin D supplementation reduces the risk of fall in the vitamin D deficient elderly: An updated meta-analysis[J]. Clin Nutr, 2021, 40(11): 5531-5537.
[152]
Roth A, Sattelmayer M, Schorderet C, et al. Effects of exercise training and dietary supplement on fat free mass and bone mass density during weight loss-a systematic review and meta-analysis[J]. F1000Res, 2022, 11: 8.
[153]
Perna S. Is vitamin D supplementation useful for weight loss programs? A systematic review and meta-analysis of randomized controlled trials[J]. Medicina (Kaunas), 2019, 55(7): 368.
[154]
Novin ZS, Ghavamzadeh S, Mehdizadeh A. The weight loss effects of branched chain amino acids and vitamin B6: A randomized controlled trial on obese and overweight women[J]. Int J Vitam Nutr Res, 2018, 88(1-2): 80-89.
[155]
Wang Y, Duan L, Han X, et al. Changes in nutritional outcomes after sleeve gastrectomy: A systematic review and meta-analysis[J]. Obes Surg, 2022, 32(1): 103-114.
[156]
Ha J, Kwon Y, Kwon JW, et al. Micronutrient status in bariatric surgery patients receiving postoperative supplementation per guidelines: insights from a systematic review and meta-analysis of longitudinal studies[J]. Obes Rev, 2021, 22(7): e13249.
[157]
Shahmiri SS, Eghbali F, Ismaeil A, et al. Selenium deficiency after bariatric surgery, incidence and symptoms: A systematic review and meta-analysis[J]. Obes Surg, 2022, 32(5): 1719-1725.
[158]
Li Z, Zhou X, Fu W. Vitamin D supplementation for the prevention of vitamin D deficiency after bariatric surgery: A systematic review and meta-analysis[J]. Eur J Clin Nutr, 2018, 72(8): 1061-1070.
[159]
Kwon Y, Ha J, Lee YH, et al. Comparative risk of anemia and related micronutrient deficiencies after Roux-en-Y gastric bypass and sleeve gastrectomy in patients with obesity: An updated meta-analysis of randomized controlled trials[J]. Obes Rev, 2022, 23(4): e13419.
[160]
Nunes R, Santos-Sousa H, Vieira S, et al. Vitamin B complex deficiency after Roux-en-Y gastric bypass and sleeve gastrectomy-a systematic review and meta-analysis[J]. Obes Surg, 2022, 32(3): 873-891.
[161]
Bogden JD, Baker H, Frank O, et al. Micronutrient status and human immunodeficiency virus (HIV) infection[J]. Ann N Y Acad Sci, 1990, 587: 189-195.
[162]
Semba RD, Tang AM. Micronutrients and the pathogenesis of human immunodeficiency virus infection[J]. Br J Nutr, 1999, 81(3): 181-189.
[163]
Tang AM, Graham NM, Saah AJ. Effects of micronutrient intake on survival in human immunodeficiency virus type 1 infection[J]. Am J Epidemiol, 1996, 143(12): 1244-1256.
[164]
Singhal N, Austin J. A clinical review of micronutrients in HIV infection[J]. J Int Assoc Physicians AIDS Care (Chic), 2002, 1(2): 63-75.
[165]
Kruzich LA, Marquis GS, Carriquiry AL, et al. US youths in the early stages of HIV disease have low intakes of some micronutrients important for optimal immune function[J]. J Am Diet Assoc, 2004, 104(7): 1095-1101.
[166]
Fufa H, Umeta M, Taffesse S, et al. Nutritional and immunological status and their associations among HIV-infected adults in Addis Ababa, Ethiopia[J]. Food Nutr Bull, 2009, 30(3): 227-232.
[167]
Jiang S, He J, Zhao X, et al. The effect of multiple micronutrient supplementation on mortality and morbidity of HIV-infected adults: A meta-analysis of randomized controlled trials[J]. J Nutr Sci Vitaminol (Tokyo), 2012, 58(2): 105-112.
[168]
Baum MK, Campa A, Lai S, et al. Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: A randomized clinical trial[J]. JAMA, 2013, 310(20): 2154-2163.
[169]
Carter GM, Indyk D, Johnson M, et al. Micronutrients in HIV: A Bayesian meta-analysis[J]. PLoS One, 2015, 10(4): e0120113.
[170]
Wobeser WL, McBane JE, Balfour L, et al. A randomized control trial of high-dose micronutrient-antioxidant supplementation in healthy persons with untreated HIV infection[J]. PLoS One, 2022, 17(7): e0270590.
[171]
Olisah VO, Abiola T, Okpataku CI, et al. The impact of 6-month micronutrient supplementation on viral, immunological, and mental health profile of a cohort of highly active antiretroviral therapy-naive HIV-positive patients in Northern Nigeria[J]. Niger Med J, 2019, 60(3): 149-155.
[172]
Villamor E, Mugusi F, Urassa W, et al. A trial of the effect of micronutrient supplementation on treatment outcome, T cell counts, morbidity, and mortality in adults with pulmonary tuberculosis[J]. J Infect Dis, 2008, 197(11): 1499-1505.
[173]
Karyadi E, West CE, Schultink W, et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status[J]. Am J Clin Nutr, 2002, 75(4): 720-727.
[174]
Lawson L, Thacher TD, Yassin MA, et al. Randomized controlled trial of zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis[J]. Trop Med Int Health, 2010, 15(12): 1481-1490.
[175]
Seyedrezazadeh E, Ostadrahimi A, Mahboob S, et al. Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients[J]. Respirology, 2008, 13(2): 294-298.
[176]
Ghulam H, Kadri SM, Manzoor A, et al. Status of zinc in pulmonary tuberculosis[J]. J Infect Dev Ctries, 2009, 3(5): 365-368.
[177]
Machmud PB, Djuwita R, Gayatri D, et al. Influence of micronutrient consumption by tuberculosis patients on the sputum conversion rate: A systematic review and meta-analysis study[J]. Acta Med Indones, 2020, 52(2): 118-124.
[178]
Xiong K, Wang J, Zhang J, et al. Association of dietary micronutrient intake with pulmonary tuberculosis treatment failure rate: acohort study[J]. Nutrients, 2020, 12(9): 2491.
[179]
Zolfaghari B, Ghanbari M, Musavi H, et al. Investigation of zinc supplement impact on the serum biochemical parameters in pulmonary tuberculosis: A double blinded placebo control trial[J]. Rep Biochem Mol Biol, 2021, 10(2): 173-182.
[180]
Kafle S, Basnet AK, Karki K, et al. Association of vitamin D deficiency with pulmonary tuberculosis: A systematic review and meta-analysis[J]. Cureus, 2021, 13(9): e17883.
[181]
Wagnew F, Alene KA, Eshetie S, et al. Effects of zinc and vitamin A supplementation on prognostic markers and treatment outcomes of adults with pulmonary tuberculosis: A systematic review and meta-analysis[J]. BMJ Glob Health, 2022, 7(9): e008625.
[182]
Boullata JI, Gilbert K, Sacks G, et al. A. S. P. E. N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing[J]. JPEN J Parenter Enteral Nutr, 2014, 38(3): 334-377.
[183]
陈莲珍, 何铁强. 肠外营养液规范化配置和稳定性探讨[J]. 中国药房, 2012, 23(33): 3155-3157.
[184]
Dupertuis YM, Morch A, Fathi M, et al. Physical characteristics of total parenteral nutrition bags significantly affect the stability of vitamins C and B1: A controlled prospective study[J]. JPEN J Parenter Enteral Nutr, 2002, 26(5): 310-316.
[185]
Allwood MC, Kearney MC. Compatibility and stability of additives in parenteral nutrition admixtures[J]. Nutrition, 1998, 14(9): 697-706.
[186]
Allwood MC, Martin HJ. The photodegradation of vitamins A and E in parenteral nutrition mixtures during infusion[J]. Clin Nutr, 2000, 19(5): 339-342.
[187]
Billion-Rey F, Guillaumont M, Frederich A, et al. Stability of fat-soluble vitamins A (retinol palmitate), E (tocopherol acetate), and K1 (phylloquinone) in total parenteral nutrition at home[J]. JPEN J Parenter Enteral Nutr, 1993, 17(1): 56-60.
[188]
陈莲珍, 曾艳. 全肠外营养液配置稳定性的影响因素和应对措施[J]. 临床药物治疗杂志, 2009, 7(6): 37-41.
[189]
中华医学会肠外肠内营养学分会, 北京医学会肠外肠内营养学分会. 维生素制剂临床应用专家共识[J]. 中华外科杂志, 2015, 53(7): 481-487.
[1] 丁仰坤, 于嘉智, 卢明珠, 牟鹏飞, 刘祥飞, 刘涛. 急性血源性骨髓炎患儿血清维生素C水平影响因素分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 689-695.
[2] 李聪, 徐艳, 吴铭, 丁瑞东, 王军. 极低出生体重儿出生时血清25-羟维生素D水平与其生后早期喂养不耐受关系的临床分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 309-314.
[3] 张秋子, 胡利梅, 陈雅茹, 左丽, 任卫东. 维生素D水平与亚急性甲状腺炎预后的相关性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 217-219.
[4] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[5] 方道成, 胡媛媛. 钙和维生素D与肾结石形成关系的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 653-656.
[6] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[7] 宋昕, 耿涛, 刘长春. 老年下呼吸道感染者血清25-羟维生素D3水平与血清炎症因子水平的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 215-217.
[8] 刘娜, 赵然然. 支气管哮喘微量元素水平与免疫功能的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 74-76.
[9] 李新星, 方晏红, 陈会振, 张蓝月, 刘涵. 维生素D与眼病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 366-370.
[10] 郝然, 魏姗珊, 吴倩如, 李学民, 翟长斌. 干燥综合征血清微量元素变化及其与疾病严重程度的相关性研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 215-220.
[11] 邓艳媚, 龙耀斌, 李鑫, 莫丽华. 经颅磁刺激结合前庭康复训练对ADHD患儿注意力缺陷的影响及临床机制[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 34-38.
[12] 王正宇, 孙琳. 硒联合不同药物治疗桥本甲状腺炎的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 125-127.
[13] 张寅杰, 王之怀, 唐雪琳, 高鹏, 朱春富, 贾中芝, 秦锡虎, 岳茂兴. 大剂量维生素B6对严重创伤后应激性肝损伤治疗作用的实验研究[J]. 中华卫生应急电子杂志, 2023, 09(05): 285-292.
[14] 何亚伟, 陈皖京, 宋佳宏, 于刚, 贾犇黎, 汪泳. 肥胖患者SCH、血清维生素D水平与NAFLD严重程度关系的研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 95-101.
[15] 俞刘珍雄, 张康睿, 杨若蕊, 刘学春, 王龙, 吴竹青, 吴君仓. 维生素D水平与接受静脉溶栓治疗的缺血性卒中患者预后的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 94-101.
阅读次数
全文


摘要