切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 220 -224. doi: 10.3877/cma.j.issn.1674-0793.2024.03.009

综述

基于类器官模型探索肠道与肠道菌群间相互关系的研究进展
王浩元1, 王舒2, 王娟2, 杨建军2,()   
  1. 1. 710021 西安医学院;710032 西安,消化系肿瘤整合防治全国重点实验室
    2. 710032 西安,消化系肿瘤整合防治全国重点实验室;710032 西安,空军军医大学第一附属医院消化外科
  • 收稿日期:2023-09-13 出版日期:2024-06-01
  • 通信作者: 杨建军
  • 基金资助:
    陕西省重点产业创新链(群)-社会发展领域重点研发计划项目(2022ZDLSF03-04); 空军军医大学临床研究项目(2022LC2212)

Research progress on the relationship between intestinal tract and gut microbiota based on organoid model

Haoyuan Wang1, Shu Wang2, Juan Wang2, Jianjun Yang2,()   

  1. 1. Xi’an Medical University, Xi’an 710021, China; National Key Laboratory for Integrated Prevention and Treatment of Digestive System Tumors, Xi’an 710032, China
    2. National Key Laboratory for Integrated Prevention and Treatment of Digestive System Tumors, Xi’an 710032, China; Department of Digestive Surgery, the First Affiliated Hospital of Air Force Military Medical University, Xi’an 710032, China
  • Received:2023-09-13 Published:2024-06-01
  • Corresponding author: Jianjun Yang
引用本文:

王浩元, 王舒, 王娟, 杨建军. 基于类器官模型探索肠道与肠道菌群间相互关系的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(03): 220-224.

Haoyuan Wang, Shu Wang, Juan Wang, Jianjun Yang. Research progress on the relationship between intestinal tract and gut microbiota based on organoid model[J]. Chinese Archives of General Surgery(Electronic Edition), 2024, 18(03): 220-224.

肠道菌群在人类健康和疾病中的重要性和多样化作用日益得到认识。从宏基因组微生物组测序研究以及从鼠-人种间差异推断因果关系的困难,促进了人类肠道-微生物相互作用的复杂体外模型的发展。本文主要回顾微生物与肠道和结肠上皮共培养的最新进展,并将快速发展的类器官模型与传统标准模型进行比较,描述肠道微生物和上皮细胞相互作用的具体个体过程如何在体外重现,同时讨论肠道类器官与微生物共培养模型的优势及其临床应用前景,探索个体化治疗的新方向。

The importance and diversification of gut microbiota in human health and disease are increasingly recognized. The difficulties in inferring causal relationships from metagenomic microbiome sequencing studies and differences between mouse and human species have promoted the development of complex in vitro models of human gut microbiome interactions. This article will review the latest progress in co-culture of microorganisms with intestinal and colonic epithelium, and compare the rapidly developing organoid model with other standard model, describe how the specific individual process of microbial epithelial interaction can be reproduced in vitro and discuss the advantages of co-cultivation models of human gut microbiota and organoid model in clinical application prospects, so as to explore the new direction of individualized treatment.

表1 3D类器官与2D细胞培养、小鼠模型的对比
图1 肠道类器官与微生物共培养模型 A为类器官管腔3D显微注射;B为类器官裁剪共培养;C为2D共培养;D为芯片上的类器官共培养
表2 肠道类器官-微生物共培养模型对体内肠上皮-微生物相互作用过程重现的程度
[1]
Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: insights into human gut-microbe interactions[J]. Cell Host Microbe, 2021, 29(6): 867-878.
[2]
Abdullah KG, Bird CE, Buehler JD, et al. Establishment of patient-derived organoid models of lower-grade glioma[J]. Neuro Oncol, 2022, 24(4): 612-623.
[3]
Wang HM, Zhang CY, Peng KC, et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study[J]. Cell Rep Med, 2023, 4(2): 100911.
[4]
Beumer J, Puschhof J, Bauzá-Martinez J, et al. High-resolution mRNA and secretome Atlas of human enteroendocrine cells[J]. Cell, 2020,182(4): 1062-1064.
[5]
Ackermann M, Rafiei Hashtchin A, Manstein F, et al. Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors[J]. Nat Protoc, 2022, 17(2): 513-539.
[6]
Roberts TG Jr, Goulart BH, Squitieri L, et al. Trends in the risks and benefits to patients with cancer participating in phase 1 clinical trials[J]. JAMA, 2004, 292(17): 2130-2140.
[7]
Leslie JL, Huang S, Opp JS, et al. Persistence and toxin production by clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function[J]. Infect Immun, 2015, 83(1): 138-145.
[8]
Williamson IA, Arnold JW, Samsa LA, et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(3): 301-319.
[9]
Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro[J]. Nature, 2011, 470(7332): 105-109.
[10]
Forbester JL, Goulding D, Vallier L, et al. Interaction of salmonella enterica serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells[J]. Infect Immun, 2015, 83(7): 2926-2934.
[11]
Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia[J]. Am J Physiol Cell Physiol, 2015, 309(6): C350-C360.
[12]
Ranganathan S, Doucet M, Grassel CL, et al. Evaluating shigella flexneri pathogenesis in the human enteroid model[J]. Infect Immun, 2019, 87(4): e00740-18.
[13]
Koestler BJ, Ward CM, Fisher CR, et al. Human intestinal enteroids as a model system of shigella pathogenesis[J]. Infect Immun, 2019, 87(4): e00733-18.
[14]
Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli[J]. Nature, 2020, 580(7802): 269-273.
[15]
Chang-Graham AL, Perry JL, Engevik MA, et al. Rotavirus induces intercellular calcium waves through ADP signaling[J]. Science, 2020, 370(6519): eabc3621.
[16]
Kayisoglu O, Weiss F, Niklas C, et al. Location-specific cell identity rather than exposure to GI microbiota defines many innate immune signalling cascades in the gut epithelium[J]. Gut, 2021, 70(4): 687-697.
[17]
Naumovska E, Aalderink G, Wong VC, et al. Direct on-chip differentiation of intestinal tubules from induced pluripotent stem cells[J]. Int J Mol Sci, 2020, 21(14): 4964.
[18]
Badgeley A, Anwar H, Modi K, et al. Effect of probiotics and gut microbiota on anti-cancer drugs: mechanistic perspectives[J]. Biochim Biophys Acta Rev Cancer, 2021,1875(1): 188494.
[19]
Xiong L, Wang S, Dean JW, et al. Group 3 innate lymphoid cell pyroptosis represents a host defence mechanism against Salmonella infection[J]. Nat Microbiol, 2022, 7(7): 1087-1099.
[20]
Lu X, Xie S, Ye L, et al. Lactobacillus protects against S. Typhimurium-induced intestinal inflammation by determining the fate of epithelial proliferation and differentiation[J]. Mol Nutr Food Res, 2020, 64(5): e1900655.
[21]
Glassner KL, Abraham BP, Quigley E. The microbiome and inflammatory bowel disease[J]. J Allergy Clin Immunol, 2020, 145(1): 16-27.
[22]
Fong W, Li Q, Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer[J]. Oncogene, 2020, 39(26): 4925-4943.
[23]
van der Vaart J, Bosmans L, Sijbesma SF, et al. Adult mouse and human organoids derived from thyroid follicular cells and modeling of Graves’ hyperthyroidism[J]. Proc Natl Acad Sci U S A, 2021, 118(51): e2117017118.
[1] 尚强强, 王凌峰, 巴特, 曹胜军, 周彪, 李全, 侯智慧, 闫增强, 陈强. 外泌型汗腺参与创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 450-453.
[2] 李武国, 陈伟, 苏乔, 李雯雯, 赵广银, 杨宇童, 刘长琳. 不同处理因素对结直肠癌类器官奥沙利铂敏感性测试结果的影响研究[J]. 中华普通外科学文献(电子版), 2021, 15(06): 418-424.
[3] 蒋正东, 李徐奇, 王曙逢, 魏光兵. 复发性腹股沟疝的腹腔镜手术策略及疗效观察[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 539-543.
[4] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[5] 高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 314-318.
[6] 张小佐, 霍海芹, 谭建新, 张芳, 冯浩洋, 许争峰. 多能干细胞体外分化为类神经管模型的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 45-50.
[7] 吴倩, 张梅. 胰岛类器官研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(02): 120-124.
[8] 刘艺霖, 吴志鹏, 邱江. 多能干细胞诱导分化为肾脏类器官的研究进展与挑战[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 57-62.
[9] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[10] 王璐, 黄楚月, 李志利, 王一, 孔德松, 刘飞, 樊志敏. 患者来源的结直肠癌类器官模型的构建及其在有毒中药抗癌活性评价中的应用[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 343-348.
[11] 王一, 吴小倩, 黄伟芳, 裴斌, 尚芳, 孔德松, 王小峰, 朱勇, 姚航, 刘飞, 樊志敏. 结直肠癌类器官生物样本库的建立和应用研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(03): 302-305.
[12] 郭莉丽, 高谋, 徐如祥. 脊髓损伤的治疗新进展[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 321-324.
[13] 陈立华, 孙恺, 夏勇, 魏帆, 黄宏志, 徐如祥. 儿童髓母细胞瘤的个体化治疗及预后相关因素分析[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 221-226.
[14] 顾国英, 黄迎春, 刘佳, 居建明, 于国锋, 蒋荣. 个体化肠外营养在肠切除伴肠功能障碍患者中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 489-493.
[15] 李甜, 蔡晓月, 王娟, 周巍, 赵英强. 基于肠道菌群的中医药干预高血压病研究进展[J]. 中华针灸电子杂志, 2022, 11(04): 149-152.
阅读次数
全文


摘要