切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 280 -288. doi: 10.3877/cma.j.issn.1674-0793.2025.04.011

综述

磷脂酰肌醇-3-激酶/蛋白激酶B通路在结直肠癌细胞程序性死亡中的作用机制及靶向治疗研究进展
周润楷, 蔡锦锋, 王法芝, 于洋, 温玉刚()   
  1. 201600 上海交通大学医学院附属第一人民医院普通外科
  • 收稿日期:2025-04-21 出版日期:2025-08-01
  • 通信作者: 温玉刚
  • 基金资助:
    国家自然科学基金项目(81972215); 上海交通大学“交大之星”计划医工交叉研究基金资助项目(YG2022QN069)

Mechanisms of the phosphatidylinositol 3-kinase/protein kinase B pathway in programmed cell death of colorectal cancer cells and advances in related targeted therapy

Runkai Zhou, Jinfeng Cai, Fazhi Wang, Yang Yu, Yugang Wen()   

  1. Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
  • Received:2025-04-21 Published:2025-08-01
  • Corresponding author: Yugang Wen
引用本文:

周润楷, 蔡锦锋, 王法芝, 于洋, 温玉刚. 磷脂酰肌醇-3-激酶/蛋白激酶B通路在结直肠癌细胞程序性死亡中的作用机制及靶向治疗研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 280-288.

Runkai Zhou, Jinfeng Cai, Fazhi Wang, Yang Yu, Yugang Wen. Mechanisms of the phosphatidylinositol 3-kinase/protein kinase B pathway in programmed cell death of colorectal cancer cells and advances in related targeted therapy[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2025, 19(04): 280-288.

结直肠癌是最常见的胃肠道恶性肿瘤,其发病率在所有癌症中位居第三且呈年轻化趋势。尽管近年来结直肠癌的检出率显著提高,治疗手段也不断丰富,但其发生发展过程中许多分子机制仍然未知。磷脂酰肌醇-3-激酶(PI3K)/蛋白激酶B(PKB/AKT)信号通路是一种参与多种生物学过程的经典信号通路,其功能包括调控细胞周期、组织代谢、肿瘤细胞侵袭与转移等。细胞程序性死亡是指细胞在特定信号或内在调控机制诱导下,按照预定程序主动结束生命的过程。在癌症细胞中,各种程序性死亡常出现多种异常,这些异常是癌症进展和耐药的重要机制。近年来许多研究表明,PI3K/AKT通路与结直肠癌细胞程序性死亡密切相关,而靶向PI3K/AKT通路在结直肠癌治疗中也逐渐成为研究热点。本文从介绍PI3K/AKT通路的构成与激活机制入手,就其在结直肠癌细胞程序性死亡中发挥的作用进行论述,以及针对该通路相关靶向治疗的研究与应用前景进行展望。

Colorectal cancer (CRC), the third most common gastrointestinal malignancy, has been becoming increasingly prevalent among younger populations. Despite improved detection and diverse treatments, many molecular mechanisms in CRC progression remain unclear. The phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (PKB/AKT) pathway, regulating cell cycle, metabolism, and cancer metastasis, are closely linked to CRC. Programmed cell death (PCD), a process of cell suicide induced by specific signals or internal mechanisms, often shows abnormalities in cancer cells, contributing to cancer progression and drug resistance. Recent studies have highlighted the close relationship between the PI3K/AKT pathway and PCD in CRC cells, making PI3K/AKT pathway a promising target for CRC therapy. This review firstly introduces the structure and activation mechanisms of the PI3K/AKT pathway. Then, it discusses the role of this pathway in PCD of CRC cells. Finally, it outlines the current research and future prospects of targeted therapies against the PI3K/AKT pathway, providing insights for CRC treatment.

表1 不同类型PI3K/AKT通路抑制剂作用机制及优缺点对比
表2 部分国内外PI3K/AKT抑制剂临床试验概况
[1]
Barot SV, Sangwan N, Nair KG, et al. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer[J]. EBioMedicine, 2024, 100: 104980.
[2]
Bai X, Wei H, Liu W, et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites[J]. Gut, 2022, 71(12): 2439–2450.
[3]
Hu M, Xu Y, Wang Y, et al. Gut microbial-derived N-acetylmuramic acid alleviates colorectal cancer via the AKT1 pathway[J]. Gut, 2025: gutjnl-2024–332891.
[4]
Huang J, Lucero-Prisno DE, 3rd, Zhang L, et al. Updated epidemiology of gastrointestinal cancers in East Asia[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(5): 271–287.
[5]
Li Y, Liu Z, Yan H, et al. Polygonatum sibiricum polysaccharide ameliorates skeletal muscle aging and mitochondrial dysfunction via PI3K/Akt/mTOR signaling pathway[J]. Phytomedicine, 2025, 136: 156316.
[6]
Li X, Jiang Z, Li J, et al. PRELP inhibits colorectal cancer progression by suppressing epithelial-mesenchymal transition and angiogenesis via the inactivation of the FGF1/PI3K/AKT pathway[J]. Apoptosis, 2025, 30(1–2): 16–34.
[7]
Griffioen AW, Nowak-Sliwinska P. A cellular danse macabre: the choreography of programmed cell death[J]. Apoptosis, 2025, 30(3–4): 507–511.
[8]
Wang C, You Z, Zhou G, et al. Amarogentin suppresses cell proliferation and EMT process through inducing ferroptosis in colorectal cancer[J]. BMC Gastroenterol, 2025, 25(1): 46.
[9]
Tian LY, Smit DJ, Popova NV, et al. All three AKT isoforms can upregulate oxygen metabolism and lactate production in human hepatocellular carcinoma cell lines[J]. Int J Mol Sci, 2024, 25(4): 2168.
[10]
Liu Y, Zhang M, Jang H, et al. The allosteric mechanism of mTOR activation can inform bitopic inhibitor optimization[J]. Chem Sci, 2024, 15(3): 1003–1017.
[11]
Hsiao KC, Ruan SY, Chen SM, et al. The B56γ3-containing protein phosphatase 2A attenuates p70S6K-mediated negative feedback loop to enhance AKT-facilitated epithelial-mesenchymal transition in colorectal cancer[J]. Cell Commun Signal, 2023, 21(1): 172.
[12]
Wang G, Feng CC, Chu SJ, et al. Toosendanin inhibits growth and induces apoptosis in colorectal cancer cells through suppression of AKT/GSK-3β/β-catenin pathway[J]. Int J Oncol, 2015, 47(5): 1767–1774.
[13]
Gao Q, Li L, Zhang QM, et al. Monotropein induced apoptosis and suppressed cell cycle progression in colorectal cancer cells[J]. Chin J Integr Med, 2024, 30(1): 25–33.
[14]
Wang H, Chen Y, Yuan Q, et al. HRK inhibits colorectal cancer cells proliferation by suppressing the PI3K/AKT/mTOR pathway[J]. Front Oncol, 2022, 12: 1053510.
[15]
Wu M, Li R, Qin J, et al. ERO1α promotes the proliferation and inhibits apoptosis of colorectal cancer cells by regulating the PI3K/AKT pathway[J]. J Mol Histol, 2023, 54(6): 621–631.
[16]
Han H, Wen Z, Yang M, et al. Shikonin derivative suppresses colorectal cancer cells growth via reactive pxygen species-mediated mitochondrial apoptosis and PI3K/AKT pathway[J]. Chem Biodivers, 2025: e202403291.
[17]
Niu X, You Q, Hou K, et al. Autophagy in cancer development, immune evasion, and drug resistance[J]. Drug Resist Updat, 2025, 78: 101170.
[18]
Zhou X, Zhao Y, Huang S, et al. TRIM32 promotes neuronal ferroptosis by enhancing K63-linked ubiquitination and subsequent p62-selective autophagic degradation of GPX4[J]. Int J Biol Sci, 2025, 21(3): 1259–1274.
[19]
Li F, Wan X, Li Z, et al. High glucose inhibits autophagy and promotes the proliferation and metastasis of colorectal cancer through the PI3K/AKT/mTOR pathway[J]. Cancer Med, 2024, 13(11): e7382.
[20]
Li Z, Ke H, Cai J, et al. MTHFD1 regulates autophagy to promote growth and metastasis in colorectal cancer via the PI3K-AKT-mTOR signaling pathway[J]. Cancer Med, 2024, 13(22): e70267.
[21]
Hao J, Mei H, Luo Q, et al. TCL1A acts as a tumour suppressor by modulating gastric cancer autophagy via miR-181a-5p-TCL1A-Akt/mTOR-c-MYC loop[J]. Carcinogenesis, 2023, 44(1): 29–37.
[22]
Yang C, Yaolin S, Lu W, et al. G-protein signaling modulator 1 promotes colorectal cancer metastasis by PI3K/AKT/mTOR signaling and autophagy[J]. Int J Biochem Cell Biol, 2023, 157: 106388.
[23]
Yang Y, Chen H, Huang S, et al. BOK-engaged mitophagy alleviates neuropathology in Alzheimer’s disease[J]. Brain, 2025, 148(2): 432–447.
[24]
Iskandar K, Foo J, Liew AQX, et al. A novel MTORC2-AKT-ROS axis triggers mitofission and mitophagy-associated execution of colorectal cancer cells upon drug-induced activation of mutant KRAS[J]. Autophagy, 2024, 20(6): 1418–1441.
[25]
Du S, Zeng F, Sun H, et al. Prognostic and therapeutic significance of a novel ferroptosis related signature in colorectal cancer patients[J]. Bioengineered, 2022, 13(2): 2498–2512.
[26]
Li J, Jiang JL, Chen YM, et al. KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway[J]. J Pathol Clin Res, 2023, 9(5): 423–435.
[27]
Liu L, Zhang C, Yang B, et al. MARCH8 ubiquitinates and degrades CEMIP to induce colorectal cancer cell ferroptosis through inactivating PI3K/AKT pathway[J]. Pathol Res Pract, 2025, 269: 155909.
[28]
Aziguli T, Xiao SY, Yang Y, et al. ENO1 promotes PDAC progression by inhibiting CD8(+) T cell infiltration through upregulating PD-L1 expression via HIF-1α signaling[J]. Transl Oncol, 2025, 52: 102261.
[29]
Hu X, Liu J, Wang Q, et al. Colon cancer-cell-specific drug delivery by gemcitabine conjugated with peptide chain targeting ENO1[J]. Int J Pharm, 2025, 673: 125402.
[30]
Liu Y, Hou Y, Zhang F, et al. ENO1 deletion potentiates ferroptosis and decreases glycolysis in colorectal cancer cells via AKT/STAT3 signaling[J]. Exp Ther Med, 2024, 27(4): 127.
[31]
Jin H, Zhu M, Zhang D, et al. B7H3 increases ferroptosis resistance by inhibiting cholesterol metabolism in colorectal cancer[J]. Cancer Sci, 2023, 114(11): 4225–4236.
[32]
Zhao MM, Ren TT, Wang JK, et al. Endoplasmic reticulum membrane remodeling by targeting reticulon-4 induces pyroptosis to facilitate antitumor immune[J]. Protein Cell, 2025, 16(2): 121–135.
[33]
Li L, Zhao L, Zhou D, et al. Targeting pyroptosis reverses KIAA1199-mediated immunotherapy resistance in colorectal cancer[J]. J Immunother Cancer, 2025, 13(2): e010000.
[34]
Han W, Xing W, Wang K, et al. Alisol A attenuates malignant phenotypes of colorectal cancer cells by inactivating PI3K/Akt signaling[J]. Oncol Lett, 2022, 24(2): 249.
[35]
Chen T, Wang Z, Zhong J, et al. Secoisolariciresinol diglucoside induces pyroptosis by activating caspase-1 to cleave GSDMD in colorectal cancer cells[J]. Drug Dev Res, 2022, 83(5): 1152–1166.
[36]
Liu WQ, Lin WR, Yan L, et al. Copper homeostasis and cuproptosis in cancer immunity and therapy[J]. Immunol Rev, 2024, 321(1): 211–227.
[37]
Zhang Q, Ma L, Zhou H, et al. A prognostic signature of cuproptosis and TCA-related genes for hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 1040736.
[38]
Huang T, Zhang Y, Wu Y, et al. CEBPB dampens the cuproptosis sensitivity of colorectal cancer cells by facilitating the PI3K/AKT/mTOR signaling pathway[J]. Saudi J Gastroenterol, 2024, 30(6): 381–388.
[39]
Yang S, Zhu Z, Zhang X, et al. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells[J]. Oncotarget, 2017, 8(4): 6102–6113.
[40]
Landry MR, Duross AN, Neufeld MJ, et al. Low dose novel PARP-PI3K inhibition via nanoformulation improves colorectal cancer immunoradiotherapy[J]. Mater Today Bio, 2020, 8: 100082.
[41]
Bukum N, Novotna E, Morell A, et al. Buparlisib is a novel inhibitor of daunorubicin reduction mediated by aldo-keto reductase 1C3[J]. Chem Biol Interact, 2019, 302: 101–107.
[42]
El-Daly SM, Abo-Elfadl MT, Hussein J, et al. Enhancement of the antitumor effect of 5-fluorouracil with modulation in drug transporters expression using PI3K inhibitors in colorectal cancer cells[J]. Life Sci, 2023, 315: 121320.
[43]
Sun L, Huang Y, Liu Y, et al. Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-κB directly regulates PUMA-dependent apoptosis[J]. Cell Death Dis, 2018, 9(9): 911.
[44]
Ding X, Chen T, Shi Q, et al. INTS6 promotes colorectal cancer progression by activating of AKT and ERK signaling[J]. Exp Cell Res, 2021, 407(2): 112826.
[45]
Chen M, Tan AH, Li J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling[J]. Nutr Cancer, 2023, 75(2): 726–733.
[46]
Dai W, Dai YG, Ren DF, et al. Dieckol, a natural polyphenolic drug, inhibits the proliferation and migration of colon cancer cells by inhibiting PI3K, AKT, and mTOR phosphorylation[J]. J Biochem Mol Toxicol, 2023, 37(5): e23313.
[47]
Mu B X, Li Y, Ye N, et al. Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies[J]. J Ethnopharmacol, 2024, 319(Pt 3): 117342.
[48]
Liu Y, Zhu Y, Gu L, et al. Chloroquine suppresses colorectal cancer progression via targeting CHKA and PFKM to inhibit the PI3K/AKT pathway and the Warburg effect[J]. Int J Biol Sci, 2025, 21(4): 1619–1631.
[49]
Chu J, Yuan C, Zhou L, et al. JianPiTongLuo (JPTL) Recipe regulates anti-apoptosis and cell proliferation in colorectal cancer through the PI3K/AKT signaling pathway[J]. Heliyon, 2024, 10(15): e35490.
[50]
Zheng Q, Jing S, Hu L, et al. Evodiamine inhibits colorectal cancer growth via RTKs mediated PI3K/AKT/p53 signaling pathway[J]. J Cancer, 2024, 15(8): 2361–2372.
[1] 姜明霞, 李俏, 徐兵河. 局部晚期HER-2阳性乳腺癌的新辅助治疗[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 129-138.
[2] 岳青芳, 辛洁, 师帅, 王冲, 闫靓, 梁雍, 冯涛, 陈遵, 段降龙. 肠鸣音相关指标对结直肠癌手术患者围手术期严重并发症的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 244-250.
[3] 刘缤妍, 朱昱冰, 李慧敏, 郝梦迪, 刘晓丽, 袁大晋, 黄汶彬, 李文杰, 曾嘉, 丁磊. 术前CT血管造影三维重建在结直肠癌手术中的应用价值:一项荟萃分析[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 209-216.
[4] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[5] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[6] 杨梦媛, 白启轩, 赵晓琳, 黄坤, 李珍, 曹世长, 程建平. ESD治疗腔内突出型结直肠肿瘤与大肠侧向发育型肿瘤的临床效果对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 405-408.
[7] 王珂, 岳育民, 武珍珍, 许泽宇, 惠晓辉, 赵云, 窦维佳, 赵青川. 腹腔镜经自然腔道手术对结直肠癌患者肠道功能及远期效果的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 413-416.
[8] 安霞, 石玉生, 宋智心. 结直肠癌早期筛查的实验室检测策略及临床价值分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 446-448.
[9] 曾舒昊, 康博禹, 郑高赞, 郑建勇, 丰帆. 青年结直肠癌患者的临床病理特征及预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 449-452.
[10] 赵晨皓, 张序东, 杨浚沫, 周何. 血清肿瘤标志物对结直肠癌患者术后复发的预测效能研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 467-470.
[11] 李博, 翟炜, 郑军华. CD70在肾细胞癌精准诊疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 399-403.
[12] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[13] 薛国强, 赵立明, 刘学军, 任玉林, 晏发隆, 杨晨, 杨嘉祺, 王永翔, 康印东. 甘草酸对尿源性脓毒症相关急性肾损伤的作用机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 498-507.
[14] 张辉, 林金铭, 郭高伟, 李鑫基, 张伟, 黄沛东, 郑长征, 陈晓生, 卢勇. 广东省医学会泌尿外科疑难病例多学科会诊(第17期)——右肾巨大肿瘤并腔静脉癌栓和髂血管血栓[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 532-538.
[15] 中国医师协会结直肠肿瘤专业委员会. 结直肠癌腹膜转移诊治专家共识(2025版)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 193-201.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?