切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2025, Vol. 19 ›› Issue (06) : 402 -408. doi: 10.3877/cma.j.issn.1674-0793.2025.06.009

综述

能谱CT在胃肠间质瘤中的应用进展
尹晓南1, 蔡兆伦1, 沈朝勇1, 张波1, 尹源2, 刘曦娇3,()   
  1. 1 610041 成都,四川大学华西医院胃癌中心
    2 610041 成都,四川大学华西医院胃肠外科病房
    3 610041 成都,四川大学华西医院放射科
  • 收稿日期:2025-07-07 出版日期:2025-12-01
  • 通信作者: 刘曦娇
  • 基金资助:
    希思科-再鼎肿瘤治疗研究基金项目(Y-zai2021/zd-0185); 国家自然科学基金青年项目(82203108); 四川省科技厅重点研发项目(2024YFFK0353); 四川省区域创新合作项目(2025YFHZ0322)

Application progress of spectral CT in gastrointestinal stromal tumors

Xiaonan Yin1, Zhaolun Cai1, Chaoyong Shen1, Bo Zhang1, Yuan Yin2, Xijiao Liu3,()   

  1. 1 Gastric Cancer Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
    2 Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
    3 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
  • Received:2025-07-07 Published:2025-12-01
  • Corresponding author: Xijiao Liu
引用本文:

尹晓南, 蔡兆伦, 沈朝勇, 张波, 尹源, 刘曦娇. 能谱CT在胃肠间质瘤中的应用进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 402-408.

Xiaonan Yin, Zhaolun Cai, Chaoyong Shen, Bo Zhang, Yuan Yin, Xijiao Liu. Application progress of spectral CT in gastrointestinal stromal tumors[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2025, 19(06): 402-408.

胃肠间质瘤(GIST)是最常见的消化道间叶源性肿瘤,其临床诊治高度依赖影像学评估。能谱CT通过多能量成像技术突破传统CT局限,其核心技术(虚拟平扫图、单能量成像、基物质分解、有效原子序数及能谱曲线分析)可定量评估肿瘤血供、成分及代谢特征,为GIST的诊断、基因分型预测、疗效评估及预后预测提供了新视角。本文系统综述能谱CT在GIST的应用价值,重点分析碘浓度、能谱曲线、虚拟平扫等参数在GIST肿瘤特征识别中的独特优势,并探讨其局限性及未来发展方向。

Gastrointestinal stromal tumor (GIST), the most common mesenchymal neoplasm of the digestive tract, relies heavily on imaging for clinical diagnosis and management. Spectral CT transcends the limitations of conventional CT through multi-energy imaging technologies, with core techniques—including virtual non-contrast (VNC) imaging, monoenergetic imaging, material decomposition, effective atomic number analysis, and spectral curve analysis—enable quantitative assessment of tumor vascularity, composition, and metabolic characteristics. This advancement provides novel insights into the diagnosis, genotype prediction, treatment response evaluation, and prognosis prediction of GIST. This review systematically examines the clinical utility of spectral CT in GIST, highlighting the distinctive advantages of iodine concentration, spectral curves, and VNC-derived parameters in characterizing tumor features. Additionally, limitations and future research directions are discussed.

表1 能谱CT的核心技术对比
表2 能谱CT定量参数在GIST中的应用价值
[1]
Alvarez CS, Piazuelo MB, Fleitas-Kanonnikoff T, et al. Incidence and survival outcomes of gastrointestinal stromal tumors[J]. JAMA Netw Open, 2024, 7(8): e2428828.
[2]
Unk M, Jezeršek Novaković B, Novaković S. Molecular mechanisms of gastrointestinal stromal tumors and their impact on systemic therapy decision[J]. Cancers (Basel), 2023, 15(5): 1498.
[3]
Hong Y, Zhong L, Lv X, et al. Application of spectral CT in diagnosis, classification and prognostic monitoring of gastrointestinal cancers: progress, limitations and prospects[J]. Front Mol Biosci, 2023, 10: 1284549.
[4]
Sahni VA, Shinagare AB, Silverman SG. Virtual unenhanced CT images acquired from dual-energy CT urography: accuracy of attenuation values and variation with contrast material phase[J]. Clin Radiol, 2013, 68(3): 264–271.
[5]
Graser A, Johnson TR, Bader M, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience[J]. Invest Radiol, 2008, 43(2): 112–119.
[6]
Wolterink JM, Leiner T, de Vos BD, et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks[J]. Med Image Anal, 2016, 34: 123–136.
[7]
Lv P, Zhang Y, Liu J, et al. Material decomposition images generated from spectral CT: detectability of urinary calculi and influencing factors[J]. Acad Radiol, 2014, 21(1): 79–85.
[8]
Willemink MJ, Persson M, Pourmorteza A, et al. Photon-counting CT: technical principles and clinical prospects[J]. Radiology, 2018, 289(2): 293–312.
[9]
Sato M, Ichikawa Y, Domae K, et al. Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen[J]. Eur Radiol, 2022, 32(8): 5499–5507.
[10]
Patino M, Prochowski A, Agrawal MD, et al. Material separation using dual-energy CT: current and emerging applications[J]. Radiographics, 2016, 36(4): 1087–105.
[11]
Neuhaus V, Große Hokamp N, Abdullayev N, et al. Metal artifact reduction by dual-layer computed tomography using virtual monoenergetic images[J]. Eur J Radiol, 2017, 93: 143–148.
[12]
Narita K, Nakamura Y, Higaki T, et al. Iodine maps derived from sparse-view kV-switching dual-energy CT equipped with a deep learning reconstruction for diagnosis of hepatocellular carcinoma[J]. Sci Rep, 2023, 13(1): 3603.
[13]
Yunaga H, Ohta Y, Kishimoto J, et al. Effect of energy difference in the evaluation of calcification size and luminal diameter in calcified coronary artery plaque using spectral CT[J]. Jpn J Radiol, 2020, 38(12): 1142–1149.
[14]
Meisamy S, Hines CD, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy[J]. Radiology, 2011, 258(3): 767–775.
[15]
Wood AM, Shea SM, Medved M, et al. Spectral characterization of tissues in high spectral and spatial resolution MR images: implications for a classification-based synthetic CT algorithm[J]. Med Phys, 2017, 44(5): 1865–1875.
[16]
Li J, Ye Y, Wang J, et al. Chinese consensus guidelines for diagnosis and management of gastrointestinal stromal tumor[J]. Chin J Cancer Res, 2017, 29(4): 281–293.
[17]
陈楠, 叶德胜, 邓满红. 能谱CT成像对胃黏膜下微小病变检出率的应用价值[J]. 现代医用影像学, 2024, 33(5): 858–861.
[18]
张瑞博, 郑艳芬. 能谱CT碘含量与超声内镜比较诊断胃黏膜下肿瘤的临床价值[J]. 中国医疗器械信息, 2023, 29(11): 77–80.
[19]
Liu J, Chai Y, Zhou J, et al. Spectral computed tomography imaging of gastric schwannoma and gastric stromal tumor[J]. J Comput Assist Tomogr, 2017, 41(3): 417–421.
[20]
Tsurumaru D, Nishimuta Y, Kai S, et al. Clinical significance of dual-energy dual-layer CT parameters in differentiating small-sized gastrointestinal stromal tumors from leiomyomas[J]. Jpn J Radiol, 2023, 41(12): 1389–1396.
[21]
吴玉锦. CT能谱成像在胃癌诊断中的初步研究应用[D]. 苏州:苏州大学, 2015.
[22]
李晶晶, 张梦琪, 刘焱. 能谱CT影像组学及CT征象对GIST危险度分级探讨[J]. 中国CT和MRI杂志, 2024, 22(7): 156–159.
[23]
于珊珊, 张极峰, 管莹, 等. 能谱CT定量参数与胃肠道间质瘤肿瘤危险度的关系[J]. 现代消化及介入诊疗, 2019, 24(4): 442–444.
[24]
Zhang X, Bai L, Wang D, et al. Gastrointestinal stromal tumor risk classification: spectral CT quantitative parameters[J]. Abdom Radiol (NY), 2019, 44(7): 2329–2336.
[25]
刘显旺, 谢一婧, 刘宏, 等. 能谱CT碘基图直方图分析预测胃间质瘤Ki-67表达水平的价值[J]. 中国临床医学影像杂志, 2025, 36(4): 260–264, 274.
[26]
张于凤, 李辉, 李晶晶, 等. 能谱CT多模态参数联合临床参数对胃间质瘤Ki-67的预测价值[J]. 分子影像学杂志, 2022, 45(5): 688–692.
[27]
Liu X, Han T, Wang Y, et al. Prediction of Ki-67 expression in gastric gastrointestinal stromal tumors using histogram analysis of monochromatic and iodine images derived from spectral CT[J]. Cancer Imaging, 2024, 24(1): 173.
[28]
Yin YQ, Liu CJ, Zhang B, et al. Association between CT imaging features and KIT mutations in small intestinal gastrointestinal stromal tumors[J]. Sci Rep, 2019, 9(1): 7257.
[29]
Qi YJ, Su GH, You C, et al. Radiomics in breast cancer: current advances and future directions[J]. Cell Rep Med, 2024, 5(9): 101719.
[30]
Xu L, Chen Z, Zhu D, Wang Y. The application status of radiomics-based machine learning in intrahepatic cholangiocarcinoma: systematic review and meta-analysis[J]. J Med Internet Res, 2025, 27: e69906.
[31]
Xu F, Ma X, Wang Y, et al. CT texture analysis can be a potential tool to differentiate gastrointestinal stromal tumors without KIT exon 11 mutation[J]. Eur J Radiol, 2018, 107: 90–97.
[32]
Liu X, Yin Y, Wang X, et al. Gastrointestinal stromal tumors: associations between contrast-enhanced CT images and KIT exon 11 gene mutation[J]. Ann Transl Med, 2021, 9(19): 1496.
[33]
Guo C, Zhou H, Chen X, et al. Computed tomography texture-based models for predicting KIT exon 11 mutation of gastrointestinal stromal tumors[J]. Heliyon, 2023, 9(10): e20983.
[34]
Wei Y, Lu Z, Ren Y. Predictive value of a radiomics nomogram model based on contrast-enhanced computed tomography for KIT exon 9 gene mutation in gastrointestinal stromal tumors[J]. Technol Cancer Res Treat, 2023, 22: 15330338231181260.
[35]
Zhang QW, Zhang RY, Yan ZB, et al. Personalized radiomics signature to screen for KIT-11 mutation genotypes among patients with gastrointestinal stromal tumors: A retrospective multicenter study[J]. J Transl Med, 2023, 21(1): 726.
[36]
Liu B, Liu H, Zhang L, et al. Value of contrast-enhanced CT based radiomic machine learning algorithm in differentiating gastrointestinal stromal tumors with KIT exon 11 mutation: A two-center study[J]. Diagn Interv Radiol, 2022, 28(1): 29–38.
[37]
Zhang Y, Yue X, Zhang P, et al. Clinical-radiomics-based treatment decision support for KIT exon 11 deletion in gastrointestinal stromal tumors: A multi-institutional retrospective study[J]. Front Oncol, 2023, 13: 1193010.
[38]
Yin XN, Wang ZH, Zou L, et al. Computed tomography radiogenomics: A potential tool for prediction of molecular subtypes in gastric stromal tumor[J]. World J Gastrointest Oncol, 2024, 16(4): 1296–1308.
[39]
蒋明巧, 杨彬, 韩福刚, 等. 胃肠道间质瘤的影像组学研究进展[J]. 浙江临床医学, 2023, 25(11): 1735–1738.
[40]
Cannella R, Tabone E, Porrello G, et al. Assessment of morphological CT imaging features for the prediction of risk stratification, mutations, and prognosis of gastrointestinal stromal tumors[J]. Eur Radiol, 2021, 31(11): 8554–8564.
[41]
孙嘉晨. 能谱CT评估胃肠间质瘤c-KIT外显子11突变状态的研究[D]. 兰州:兰州大学, 2023.
[42]
Meyer M, Ota H, Messiou C, et al. Prospective evaluation of quantitative response parameter in patients with gastrointestinal stroma tumor undergoing tyrosine kinase inhibitor therapy-impact on clinical outcome[J]. Int J Cancer, 2024, 155(11): 2047–2057.
[43]
Ekert K, Hinterleitner C, Horger M. Prognosis assessment in metastatic gastrointestinal stromal tumors treated with tyrosine kinase inhibitors based on CT-texture analysis[J]. Eur J Radiol, 2019, 116: 98–105.
[44]
张学凌, 周俊林. 胃肠道间质瘤的影像研究进展[J]. 国际医学放射学杂志, 2017, 40(2): 170–173.
[45]
Douek PC, Boccalini S, Oei EHG, et al. Clinical applications of photon-counting CT: A review of pioneer studies and a glimpse into the future[J]. Radiology, 2023, 309(1): e222432.
[46]
Symons R, Reich DS, Bagheri M, et al. Photon-counting computed tomography for vascular imaging of the head and neck: first in vivo human results[J]. Invest Radiol, 2018, 53(3): 135–142.
[1] 潘芮, 李守强, 陈双, 付昕, 王卓, 冷晓萍. 应用RVP技术定量评估H型高血压患者颈动脉斑块特征及其与缺血性脑卒中风险的相关性[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 824-831.
[2] 沈婷婷, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 张铭旋. 胎儿心脏定量分析技术评估单纯性完全型大动脉转位胎儿心脏形态及功能的初步研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 120-130.
[3] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[4] 王博冉, 乔春梅, 李春歌, 王欣, 王晓磊. 超声造影评估类风湿关节炎亚临床滑膜炎疾病进展的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 802-808.
[5] 马琳, 彭驰涵, 朱晓霞, 范红霞, 杨家丽, 罗燕. 超声造影定量评估大鼠70%肝切除后不同类型门静脉狭窄残肝微循环灌注的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(01): 83-89.
[6] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J/OL]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[7] 孔凡鑫, 刘硕, 王永槐, 赵斓婷, 杨军, 马春燕. 三维超声全自动动态容积定量技术对双心室收缩功能的评估[J/OL]. 中华医学超声杂志(电子版), 2022, 19(04): 342-349.
[8] 赵燕, 王昱昊, 王娟, 杨建军. 胃肠间质瘤的诊疗进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(01): 66-70.
[9] 曾弘. 膀胱癌病理报告中常用免疫组化标记物的解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 296-302.
[10] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[11] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[12] 贾乃龙, 李传资, 王绥煌, 张余鹏, 林志华, 林昌昆, 黄垂志. 低剂量能谱CT结合多平面重建技术对肺癌和肺炎性结节鉴别诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 247-251.
[13] 赵迪, 杨鑫鑫, 孟宏学. 液体活检技术在结直肠癌诊疗领域的应用[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(02): 135-140.
[14] 王宇珊, 郑晓汾, 于花, 韩玉萍, 宁晓玲. 翼状胬肉患者术中角膜、结膜缺损面积与其术后干眼相关性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 344-349.
[15] 林燕霞, 吴才标, 王小霞. 实时超声造影定量分析对体检初次发现肝脏局灶性病变的诊断价值分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(02): 176-181.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?