切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2020, Vol. 14 ›› Issue (03) : 161 -168. doi: 10.3877/cma.j.issn.1674-0793.2020.03.001

所属专题: 文献 指南共识

专家共识

甲状腺癌基因检测与临床应用广东专家共识(2020版)
广东省医学教育协会甲状腺专业委员会, 广东省基层医药学会细胞病理与分子诊断专业委员会   
  • 收稿日期:2020-03-29 出版日期:2020-06-01
  • 基金资助:
    国家自然科学基金资助项目(81702654、81903043); 广东省自然科学基金资助项目(2017A030313642、2018A030310086)

Guangdong expert consensus on gene testing and clinical application in thyroid cancer (Version 2020)

Thyroid Professional Committee of GuangdongMedical Education Association, Cellular Pathology and Molecular Diagnostics Professional Committee of Guangdong Provincial Primary Medical Society   

  • Received:2020-03-29 Published:2020-06-01
引用本文:

广东省医学教育协会甲状腺专业委员会, 广东省基层医药学会细胞病理与分子诊断专业委员会. 甲状腺癌基因检测与临床应用广东专家共识(2020版)[J]. 中华普通外科学文献(电子版), 2020, 14(03): 161-168.

Thyroid Professional Committee of GuangdongMedical Education Association, Cellular Pathology and Molecular Diagnostics Professional Committee of Guangdong Provincial Primary Medical Society. Guangdong expert consensus on gene testing and clinical application in thyroid cancer (Version 2020)[J]. Chinese Archives of General Surgery(Electronic Edition), 2020, 14(03): 161-168.

表1 共识证据质量等级
表2 TBSRTC分类恶性风险与管理推荐
图1 分化型甲状腺癌(cN0)基因变异与个体化管理方案制定推荐 具体手术方案的制定应根据影像学和细胞学等临床资料综合考虑;a多基因突变特指BRAF/RAS合并TERTPIK3CATP53等突变;分化型甲状腺癌(DTC);乳头状甲状腺微小癌(PTMC);放射性碘(radioiodine, RAI)
表3 髓样甲状腺癌不同密码子恶性风险与管理推荐
[1]
中华人民共和国国家卫生健康委员会. 甲状腺癌诊疗规范(2018年版)[J/CD]. 中华普通外科学文献(电子版), 2019, 13(1): 1-15.
[2]
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26: 1-133.
[3]
中华医学会内分泌学分会, 中华医学会外科学分会内分泌学组, 中国抗癌协会头颈肿瘤专业委员会, 等. 甲状腺结节和分化型甲状腺癌诊治指南[J]. 中华内分泌代谢杂志, 2012, 28(10): 779-797.
[4]
Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology[J]. Thyroid, 2017, 27: 1341-1346.
[5]
Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer[J]. Lancet, 2013, 381(9871): 1058-1069.
[6]
Mayson SE, Haugen BR. Molecular diagnostic evaluation of thyroid nodules[J]. Endocrinol Metab Clin North Am, 2019, 48(1): 85-97.
[7]
Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules[J]. J Clin Endocrinol Metab, 2009, 94(6): 2092-2098.
[8]
Ghuzlan AA, Ramos HE, Schlumberger M. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features[J]. Curr Opin Endocrinol Diabetes Obes, 2017, 24(5): 377-380.
[9]
Najafian A, Noureldine S, Azar F, et al. RAS Mutations, and RET/PTC and PAX8/PPAR-gamma chromosomal rearrangements are also prevalent in benign thyroid lesions: implications thereof and a systematic review[J]. Thyroid, 2017, 27(1): 39-48.
[10]
D'Cruz AK, Vaish R, Vaidya A, et al. Molecular markers in well-differentiated thyroid cancer[J]. Eur Arch Otorhinolaryngol, 2018, 275(6): 1375-1384.
[11]
Pavlidis ET, Pavlidis TE. A review of primary thyroid lymphoma: molecular factors, diagnosis and management[J]. J Invest Surg, 2019, 32(2): 137-142.
[12]
Liu R, Xing M. TERT promoter mutations in thyroid cancer[J]. Endocr Relat Cancer, 2016, 23: R143-R155.
[13]
Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma[J]. Cell, 2014, 159(3): 676-690.
[14]
Ito Y, Miyauchi A, Inoue H, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients[J]. World J Surg, 2010, 34(1): 28-35.
[15]
Oh HS, Ha J, Kim HI, et al. Active surveillance of low-risk papillary thyroid microcarcinoma: A multi-center cohort study in Korea[J]. Thyroid, 2018, 28(12): 1587-1594.
[16]
Xue S, Wang P, Hurst ZA, et al. Active surveillance for papillary thyroid microcarcinoma: challenges and prospects[J]. Front Endocrinol (Lausanne), 2018, 9: 736.
[17]
中国医师协会甲状腺肿瘤消融治疗技术专家组, 中国抗癌协会甲状腺癌专业委员会, 中国医师协会介入医师分会超声介入专业委员会, 等. 甲状腺良性结节、微小癌及颈部转移性淋巴结热消融治疗专家共识(2018版)[J]. 中国肿瘤, 2018, 27(10): 768-773.
[18]
Tufano RP, Bishop J, Wu G. Reoperative central compartment dissection for patients with recurrent/persistent papillary thyroid cancer: efficacy, safety, and the association of the BRAF mutation[J]. Laryngoscope, 2012, 122(7): 1634-1640.
[19]
Zheng X, Peng C, Gao M, et al. Risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: A study of 1 587patients[J]. Cancer Biol Med, 2019, 16(1): 121-130.
[20]
Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence[J]. J Clin Oncol, 2014, 32(25): 2718-2726.
[21]
Song YS, Lim JA, Choi H, et al. Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients[J]. Cancer, 2016, 122(9): 1370-1379.
[22]
Xing M. Genetic-guided risk assessment and management of thyroid cancer[J]. Endocrinol Metab Clin North Am, 2019, 48(1): 109-124.
[23]
Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer[J]. J Clin Oncol 2015, 33: 42-50.
[24]
Liu D, Hu S, Hou P, et al. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant[J]. Clin Cancer Res, 2007, 13(4): 1341-1349.
[25]
Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632.
[26]
Cabanillas ME, Ryder M, Jimenez C. Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond[J]. Endocr Rev, 2019, 40(6): 1573-1604.
[27]
Naoum GE, Morkos M, Kim B, et al. Novel targeted therapies and immunotherapy for advanced thyroid cancers[J]. Mol Cancer, 2018, 17(1): 51.
[28]
Krajewska J, Olczyk T, Jarzab B. Cabozantinib for the treatment of progressive metastatic medullary thyroid cancer[J]. Expert Rev Clin Pharmacol, 2016, 9(1): 69-79.
[29]
Bano G, Hodgson S. Diagnosis and management of hereditary thyroid cancer[J]. Recent Results Cancer Res, 2016, 205: 29-44.
[30]
Guilmette J, Nosé V. Hereditary and familial thyroid tumours[J]. Histopathology, 2018, 72(1): 70-81.
[31]
Chen H, Sippel RS, O'Dorisio MS, et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer[J]. Pancreas, 2010, 39(6): 775-783.
[32]
Krampitz GW, Norton JA. RET gene mutations (genotype and phenotype) of multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma[J]. Cancer, 2014, 120(13): 1920-1931.
[33]
Ganeshan D, Paulson E, Duran C, et al. Current update on medullary thyroid carcinoma[J]. AJR Am J Roentgenol, 2013, 201(6): W867-W876.
[34]
Ceolin L, Duval M, Benini AF, et al. Medullary thyroid carcinoma beyond surgery: advances, challenges, and perspectives[J]. Endocr Relat Cancer, 2019, 26(9): R499-R518.
[35]
Metzger R, Milas M. Inherited cancer syndromes and the thyroid: An update[J]. Curr Opin Oncol, 2014, 26(1): 51-61.
[36]
Navas-Carrillo D, Ríos A, Rodríguez JM, et al. Familial nonmedullary thyroid cancer: screening, clinical, molecular and genetic findings[J]. Biochim Biophys Acta, 2014, 1846(2): 468-476.
[37]
Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: A prospective analysis of 1 056 FNA samples[J]. J Clin Endocrinol Metab, 2011, 96(11): 3390-3397.
[38]
Zhang M, Lin O. Molecular testing of thyroid nodules: A review of current available tests for fine-needle aspiration specimens[J]. Arch Pathol Lab Med, 2016, 140(12): 1338-1344.
[39]
Giordano TJ, Beaudenon-Huibregtse S, Shinde R, et al. Molecular testing for oncogenic gene mutations in thyroid lesions: A case-control validation study in 413 postsurgical specimens[J]. Hum Pathol, 2014, 45(7): 1339-1347.
[40]
Labourier E, Shifrin A, Busseniers AE, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology[J]. J Clin Endocrinol Metab, 2015, 100(7): 2743-2750.
[41]
Nikiforova MN, Wald AI, Roy S, et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer[J]. J Clin Endocrinol Metab, 2013, 98(11): E1852-E1860.
[42]
Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay[J]. Cancer, 2014, 120(23): 3627-3634.
[43]
Nikiforova MN, Mercurio S, Wald AI, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules[J]. Cancer, 2018, 124(8): 1682-1690.
[44]
Ngeow J, Mester J, Rybicki LA, et al. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations[J]. J Clin Endocrinol Metab, 2011, 96(12): E2063-E2071.
[45]
Jarzab B, Feldt-Rasmussen U. Introduction to European comments on "Medullary Thyroid Cancer: management guidelines of the American Thyroid Association"[J]. Thyroid Res, 2013, 6 Suppl 1: S1.
[46]
Gammon A, Jasperson K, Champine M. Genetic basis of Cowden syndrome and its implications for clinical practice and risk management[J]. Appl Clin Genet, 2016, 9: 83-92.
No related articles found!
阅读次数
全文


摘要