1 |
Hanahan D, Robert A. Weinberg. Hallmarks of Cancer: The Next Generation. Cell, 2011, 144(5): 646-674.
|
2 |
Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol, 2003, 206(12): 2049-2057.
|
3 |
Nakashima RA, Mangan PS, Colombini M, et al. Hexokinase receptor complex in hepatoma mitochondria: evidence from N, N-dicyclohexylcarbodiimide -labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry,1986, 25(5): 1015-1021.
|
4 |
Buchakjian MR, Kornbluth S. The engine driving the ship: Metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol Biol, 2010, 11(10): 715-727.
|
5 |
Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 2004, 64(11): 3892-3899.
|
6 |
Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-Ⅱ. Cell Death Differ, 2008, 15(3): 521-529.
|
7 |
Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase Ⅱ inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem, 2002, 277(9): 7610-7618.
|
8 |
Majewski N, Nogueira V, Bhaskar P, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell, 2004, 16(5): 819-830.
|
9 |
Mergenthaler P, Kahl A, Kamitz A, et al. Mitochondrial hexokinase Ⅱ (HK-Ⅱ ) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state. PNAS, 2012, 109(5): 1518-1523.
|
10 |
Buchakjian MR, Kornbluth S. The engine driving the ship: Metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol, 2010, 11(10): 715-727.
|
11 |
Dendelé B, Tekpli X, Sergent O, et al. Identification of the couple GSK3a/c-Myc as a new regulator of hexokinaseⅡin benzo[a]pyrene-induced apoptosis. Toxicology in Vitro, 2012, 26(1): 94-101.
|
12 |
Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol, 2003, 206(12): 2049-2057.
|
13 |
Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 2006, 25(34): 4683-4696.
|
14 |
Sebastian S, Kenkare UW. Expression of two typeⅡ-like tumor hexokinase RNA transcripts in cancer cell lines. Tumour Biol, 1998, 19(4): 253-260.
|
15 |
Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem, 1981, 256(16): 8699-8704.
|
16 |
Bustamante E, Pedersen PL. Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties. Biochemistry, 1980, 19(22): 4972-4977.
|
17 |
Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for typeⅡhexokinase. J Biol Chem, 1995, 270(28): 16918-16925.
|
18 |
Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the typeⅡhexokinase gene to hypoxic conditions. J Biol Chem, 2001, 276(46): 43407-43412.
|
19 |
Rempel A, Mathupala SP, Griffin CA, et al. Glucose catabolism in cancer cells: amplification of the gene encoding typeⅡhexokinase. Cancer Res, 1996, 56(11): 2468-2471.
|
20 |
Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type Ⅱ hexokinase gene expression. J Biol Chem, 2003, 278(17): 15333-15340.
|
21 |
Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology, 1982, 32(12): 1323-1329.
|
22 |
Park HS, Chung JW, Jae HJ, et al. FDG-PET for evaluating the antitumor effect of intraarterial 3-bromopyruvate administration in a rabbit VX2 liver tumor model. Korean J Radiol, 2007, 8(3): 216-224.
|
23 |
Hwang MH, Kim JE, Lee YL, et al. The effect of radionucleide hNIS gene therapy and lentivirus-mediated RNAi HexokinaseⅡin rat aortic vascular smooth muscle A7r5 cell line. J Nucl Med, 2010, 51(Supplement 2): 1684.
|
24 |
Peng QP, Zhou JM, Zhou Q, et al. Downregulation of the Hexokinase ⅡGene Sensitizes Human Colon Cancer Cells to 5-Fluorouracil. Chemotherapy, 2008, 54(5): 357-363.
|
25 |
Ko YH, Smith BL, Wang Y, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun, 2004, 324(1): 269-275.
|
26 |
Kim JS, Ahn KJ, Kim JA, et al. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J Bioenerg. Biomembr, 2008, 40(6): 607-618.
|
27 |
Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol, 2009, 19(1): 17-24.
|