切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2013, Vol. 07 ›› Issue (01) : 56 -60. doi: 10.3877/cma.j.issn.1647-0793.2013.01.013

所属专题: 文献

综述

己糖激酶Ⅱ与肿瘤研究进展
罗贵娟1   
  1. 1. 200433 上海,第二军医大学生物化学与分子生物学教研室
  • 收稿日期:2012-09-12 出版日期:2013-02-01

Hexokinase-II and tumor

Gui-juan LUO1   

  1. 1. Department of Biochemistry and Molecular Biology, the Second Military Medical University, Shanghai 200433, China
  • Received:2012-09-12 Published:2013-02-01
引用本文:

罗贵娟. 己糖激酶Ⅱ与肿瘤研究进展[J/OL]. 中华普通外科学文献(电子版), 2013, 07(01): 56-60.

Gui-juan LUO. Hexokinase-II and tumor[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2013, 07(01): 56-60.

肿瘤最显著的代谢特征是高效糖酵解,即Warburg效应。肿瘤糖酵解活跃程度与肿瘤生长速度和侵袭性密切相关。尽管肿瘤高效糖酵解机制涉及癌基因事件,但糖酵解关键酶异常在肿瘤Warburg效应中起主要作用,其中己糖激酶Ⅱ(HK-Ⅱ)在恶性肿瘤中表达、亚细胞分布和酶动力学改变更显著,并且与肿瘤特征性代谢表型、细胞增殖和凋亡调节密切相关。HK-Ⅱ可能是探索肿瘤诊断和治疗的潜在靶点。

The most significant metabolic features of malignant tumors is their highly effective glycolysis, i.e., the "Warburg effect" . The active degree in tumor glycolysis is closely related to cancer growth and aggressive. Although the mechanism of efficient glycolysis in tumor are involved in oncogene events, the abnormalities of key enzymes in glycolysis, play a pivotal role in tumor Warburg effect. Among others, there is more significant alterations of hexokinase (HK ) in the expression, subcellular distribution and kinetics, and which is is bound up with the prominent metabolic phenotype, proliferation and apoptosis of malignant cell. HK-Ⅱ may be a potential target for exploring the diagnosis and therapy of tumor.

图1 己糖激酶与葡萄糖代谢
图2 线粒体结合型HK的作用模式图
1
Hanahan D, Robert A. Weinberg. Hallmarks of Cancer: The Next Generation. Cell, 2011, 144(5): 646-674.
2
Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol, 2003, 206(12): 2049-2057.
3
Nakashima RA, Mangan PS, Colombini M, et al. Hexokinase receptor complex in hepatoma mitochondria: evidence from N, N-dicyclohexylcarbodiimide -labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry,1986, 25(5): 1015-1021.
4
Buchakjian MR, Kornbluth S. The engine driving the ship: Metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol Biol, 2010, 11(10): 715-727.
5
Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 2004, 64(11): 3892-3899.
6
Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-Ⅱ. Cell Death Differ, 2008, 15(3): 521-529.
7
Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase Ⅱ inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem, 2002, 277(9): 7610-7618.
8
Majewski N, Nogueira V, Bhaskar P, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell, 2004, 16(5): 819-830.
9
Mergenthaler P, Kahl A, Kamitz A, et al. Mitochondrial hexokinase Ⅱ (HK-Ⅱ ) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state. PNAS, 2012, 109(5): 1518-1523.
10
Buchakjian MR, Kornbluth S. The engine driving the ship: Metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol, 2010, 11(10): 715-727.
11
Dendelé B, Tekpli X, Sergent O, et al. Identification of the couple GSK3a/c-Myc as a new regulator of hexokinaseⅡin benzo[a]pyrene-induced apoptosis. Toxicology in Vitro, 2012, 26(1): 94-101.
12
Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol, 2003, 206(12): 2049-2057.
13
Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 2006, 25(34): 4683-4696.
14
Sebastian S, Kenkare UW. Expression of two typeⅡ-like tumor hexokinase RNA transcripts in cancer cell lines. Tumour Biol, 1998, 19(4): 253-260.
15
Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem, 1981, 256(16): 8699-8704.
16
Bustamante E, Pedersen PL. Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties. Biochemistry, 1980, 19(22): 4972-4977.
17
Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for typeⅡhexokinase. J Biol Chem, 1995, 270(28): 16918-16925.
18
Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the typeⅡhexokinase gene to hypoxic conditions. J Biol Chem, 2001, 276(46): 43407-43412.
19
Rempel A, Mathupala SP, Griffin CA, et al. Glucose catabolism in cancer cells: amplification of the gene encoding typeⅡhexokinase. Cancer Res, 1996, 56(11): 2468-2471.
20
Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type Ⅱ hexokinase gene expression. J Biol Chem, 2003, 278(17): 15333-15340.
21
Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology, 1982, 32(12): 1323-1329.
22
Park HS, Chung JW, Jae HJ, et al. FDG-PET for evaluating the antitumor effect of intraarterial 3-bromopyruvate administration in a rabbit VX2 liver tumor model. Korean J Radiol, 2007, 8(3): 216-224.
23
Hwang MH, Kim JE, Lee YL, et al. The effect of radionucleide hNIS gene therapy and lentivirus-mediated RNAi HexokinaseⅡin rat aortic vascular smooth muscle A7r5 cell line. J Nucl Med, 2010, 51(Supplement 2): 1684.
24
Peng QP, Zhou JM, Zhou Q, et al. Downregulation of the Hexokinase ⅡGene Sensitizes Human Colon Cancer Cells to 5-Fluorouracil. Chemotherapy, 2008, 54(5): 357-363.
25
Ko YH, Smith BL, Wang Y, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun, 2004, 324(1): 269-275.
26
Kim JS, Ahn KJ, Kim JA, et al. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J Bioenerg. Biomembr, 2008, 40(6): 607-618.
27
Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol, 2009, 19(1): 17-24.
[1] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[2] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[3] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[4] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[5] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[6] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[7] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[8] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[9] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[10] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[11] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[14] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[15] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?