切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2013, Vol. 07 ›› Issue (01) : 56 -60. doi: 10.3877/cma.j.issn.1647-0793.2013.01.013

所属专题: 文献

综述

己糖激酶Ⅱ与肿瘤研究进展
罗贵娟1   
  1. 1. 200433 上海,第二军医大学生物化学与分子生物学教研室
  • 收稿日期:2012-09-12 出版日期:2013-02-01

Hexokinase-II and tumor

Gui-juan LUO1   

  1. 1. Department of Biochemistry and Molecular Biology, the Second Military Medical University, Shanghai 200433, China
  • Received:2012-09-12 Published:2013-02-01
引用本文:

罗贵娟. 己糖激酶Ⅱ与肿瘤研究进展[J]. 中华普通外科学文献(电子版), 2013, 07(01): 56-60.

Gui-juan LUO. Hexokinase-II and tumor[J]. Chinese Archives of General Surgery(Electronic Edition), 2013, 07(01): 56-60.

肿瘤最显著的代谢特征是高效糖酵解,即Warburg效应。肿瘤糖酵解活跃程度与肿瘤生长速度和侵袭性密切相关。尽管肿瘤高效糖酵解机制涉及癌基因事件,但糖酵解关键酶异常在肿瘤Warburg效应中起主要作用,其中己糖激酶Ⅱ(HK-Ⅱ)在恶性肿瘤中表达、亚细胞分布和酶动力学改变更显著,并且与肿瘤特征性代谢表型、细胞增殖和凋亡调节密切相关。HK-Ⅱ可能是探索肿瘤诊断和治疗的潜在靶点。

The most significant metabolic features of malignant tumors is their highly effective glycolysis, i.e., the "Warburg effect" . The active degree in tumor glycolysis is closely related to cancer growth and aggressive. Although the mechanism of efficient glycolysis in tumor are involved in oncogene events, the abnormalities of key enzymes in glycolysis, play a pivotal role in tumor Warburg effect. Among others, there is more significant alterations of hexokinase (HK ) in the expression, subcellular distribution and kinetics, and which is is bound up with the prominent metabolic phenotype, proliferation and apoptosis of malignant cell. HK-Ⅱ may be a potential target for exploring the diagnosis and therapy of tumor.

图1 己糖激酶与葡萄糖代谢
图2 线粒体结合型HK的作用模式图
1
Hanahan D, Robert A. Weinberg. Hallmarks of Cancer: The Next Generation. Cell, 2011, 144(5): 646-674.
2
Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol, 2003, 206(12): 2049-2057.
3
Nakashima RA, Mangan PS, Colombini M, et al. Hexokinase receptor complex in hepatoma mitochondria: evidence from N, N-dicyclohexylcarbodiimide -labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry,1986, 25(5): 1015-1021.
4
Buchakjian MR, Kornbluth S. The engine driving the ship: Metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol Biol, 2010, 11(10): 715-727.
5
Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 2004, 64(11): 3892-3899.
6
Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-Ⅱ. Cell Death Differ, 2008, 15(3): 521-529.
7
Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase Ⅱ inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem, 2002, 277(9): 7610-7618.
8
Majewski N, Nogueira V, Bhaskar P, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell, 2004, 16(5): 819-830.
9
Mergenthaler P, Kahl A, Kamitz A, et al. Mitochondrial hexokinase Ⅱ (HK-Ⅱ ) and phosphoprotein enriched in astrocytes (PEA15) form a molecular switch governing cellular fate depending on the metabolic state. PNAS, 2012, 109(5): 1518-1523.
10
Buchakjian MR, Kornbluth S. The engine driving the ship: Metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol, 2010, 11(10): 715-727.
11
Dendelé B, Tekpli X, Sergent O, et al. Identification of the couple GSK3a/c-Myc as a new regulator of hexokinaseⅡin benzo[a]pyrene-induced apoptosis. Toxicology in Vitro, 2012, 26(1): 94-101.
12
Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol, 2003, 206(12): 2049-2057.
13
Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 2006, 25(34): 4683-4696.
14
Sebastian S, Kenkare UW. Expression of two typeⅡ-like tumor hexokinase RNA transcripts in cancer cell lines. Tumour Biol, 1998, 19(4): 253-260.
15
Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem, 1981, 256(16): 8699-8704.
16
Bustamante E, Pedersen PL. Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties. Biochemistry, 1980, 19(22): 4972-4977.
17
Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for typeⅡhexokinase. J Biol Chem, 1995, 270(28): 16918-16925.
18
Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the typeⅡhexokinase gene to hypoxic conditions. J Biol Chem, 2001, 276(46): 43407-43412.
19
Rempel A, Mathupala SP, Griffin CA, et al. Glucose catabolism in cancer cells: amplification of the gene encoding typeⅡhexokinase. Cancer Res, 1996, 56(11): 2468-2471.
20
Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type Ⅱ hexokinase gene expression. J Biol Chem, 2003, 278(17): 15333-15340.
21
Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology, 1982, 32(12): 1323-1329.
22
Park HS, Chung JW, Jae HJ, et al. FDG-PET for evaluating the antitumor effect of intraarterial 3-bromopyruvate administration in a rabbit VX2 liver tumor model. Korean J Radiol, 2007, 8(3): 216-224.
23
Hwang MH, Kim JE, Lee YL, et al. The effect of radionucleide hNIS gene therapy and lentivirus-mediated RNAi HexokinaseⅡin rat aortic vascular smooth muscle A7r5 cell line. J Nucl Med, 2010, 51(Supplement 2): 1684.
24
Peng QP, Zhou JM, Zhou Q, et al. Downregulation of the Hexokinase ⅡGene Sensitizes Human Colon Cancer Cells to 5-Fluorouracil. Chemotherapy, 2008, 54(5): 357-363.
25
Ko YH, Smith BL, Wang Y, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun, 2004, 324(1): 269-275.
26
Kim JS, Ahn KJ, Kim JA, et al. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J Bioenerg. Biomembr, 2008, 40(6): 607-618.
27
Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol, 2009, 19(1): 17-24.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[5] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[6] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[7] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[8] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[9] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[10] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[11] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[12] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[13] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[14] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[15] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
阅读次数
全文


摘要