切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2017, Vol. 11 ›› Issue (03) : 148 -153. doi: 10.3877/cma.j.issn.1674-0793.2017.03.002

所属专题: 文献

论著

靶向阳离子脂质体递送miRNA对三阴性乳腺癌抑制作用的研究
徐枫1, 刘婷1, 赵亚男2, 陆森1, 陈园园1, 叶园园1, 刘培峰2, 韩宝三1,()   
  1. 1. 200092 上海交通大学医学院附属新华医院普外科 普通外科实验室
    2. 200127 上海交通大学医学院附属仁济医院中心实验室
  • 收稿日期:2017-04-06 出版日期:2017-06-01
  • 通信作者: 韩宝三
  • 基金资助:
    国家自然科学基金资助项目(81172078); 宁波市社会发展重大择优科技攻关项目(2012C5013)

Delivery of tumor suppressive miRNA to triple negative breast cancer by targeting cationic liposome

Feng Xu1, Ting Liu1, Yanan Zhao2, Sen Lu1, Yuanyuan Chen1, Yuanyuan Ye1, Peifeng Liu2, Baosan Han1,()   

  1. 1. Department of General Surgery, General Surgery Laboratory, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
    2. Medical Science Research Center, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
  • Received:2017-04-06 Published:2017-06-01
  • Corresponding author: Baosan Han
  • About author:
    Corresponding author: Han Baosan, Email:
引用本文:

徐枫, 刘婷, 赵亚男, 陆森, 陈园园, 叶园园, 刘培峰, 韩宝三. 靶向阳离子脂质体递送miRNA对三阴性乳腺癌抑制作用的研究[J/OL]. 中华普通外科学文献(电子版), 2017, 11(03): 148-153.

Feng Xu, Ting Liu, Yanan Zhao, Sen Lu, Yuanyuan Chen, Yuanyuan Ye, Peifeng Liu, Baosan Han. Delivery of tumor suppressive miRNA to triple negative breast cancer by targeting cationic liposome[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2017, 11(03): 148-153.

目的

探讨靶向阳离子脂质体(CLPs)递送miRNA对三阴性乳腺癌(TNBC)相关特异性抑瘤基因的作用。

方法

通过薄膜分散法评估理化性质对阳离子脂质成分进行优化,制备具有理想表征性质的新型透明质酸(HA)CLP,表征CLPs的粒径和zeta电位。对CLPs进行表面HA靶向修饰,并通过激光共聚焦观察和流式细胞术的荧光检测评估HA-CLPs进入细胞的能力。利用EdU细胞增殖检测和细胞划痕实验对负载miRNA的HA-CLPs对细胞产生的生物学效应进行研究。

结果

薄膜分散法制备的CLPs纳米颗粒分散性良好、形态均一,呈中空球形结构,CLPs平均粒径为(180.6±3.4)nm、平均zeta电位为(43.4±2.8)mV。经过HA修饰后的纳米颗粒及运载miR-205后的纳米颗粒平均粒径分别为(236.65±6.9)nm、(205.6±2.2)nm,平均电位分别为(29.1±5.4)mV、(11.2±1.1)mV。经过激光共聚焦检测和流式细胞术荧光检测,验证了HA-CLPs能够顺利将miR-205运送至细胞内而分布在细胞核附近,且HA的靶向作用显著。EdU实验和细胞划痕实验验证了运载入TNBC细胞内的miR-205和miR-34a对其增殖和迁移的抑制作用。

结论

制备的靶向阳离子脂质体对TNBC细胞具有较强的靶向特异性,且通过靶向递送miR-205和miR-34a对TNBC细胞的增殖和迁移起到了一定的抑制作用。

Objective

To investigate the effect of delivering specific tumor suppressor genes miRNA in triple negative breast cancer (TNBC).

Methods

Film dispersion method was utilized to prepare for the new-pattern hyaluronic acid (HA)-targeted cationic liposome (HA-CLPs). The physicochemical property, such as the representation of the size and zeta-potential of CLPs nanoparticles, was assessed and then the nanoparticles were modified with HA. Confocal and flow cytometry (FCM) was applied to assess targeting capacity, while EdU cell proliferation test and cell wound scratch assay to assess biological effects of HA-CLPs.

Results

Nanoparticles of CLPs were of good dispersibility and shaped as homogeneous form of hollow globe. The average size of CLPs was (180.6±3.4) nm and the average zeta-potential was (43.4±2.8) mV. The average size of HA-targeted nanoparticles and miRNA-loaded HA-targeted nanoparticles was (236.65±6.9) nm and (205.6±2.2) nm. The average zeta-potential of HA-targeted nanoparticles and miRNA-loaded HA-targeted nanoparticles was (29.1±5.4) mV and (11.2±1.1) mV. Confocal and FCM verified the targeting capacity of HA-CLPs to deliver miR-205 around the MDA-MB-231 cell nucleus observably. EdU cell proliferation test and cell wound scratch assay proved that miR-205 and miR-34a sent into MDA-MB-231 cell had the ability to inhibit cell proliferation and migration.

Conclusion

Targeted cationic liposome has specific targeting ability towards MDA-MB-231 cell, and the delivery of miR-205 and miR-34a plays a part in the proliferation and migration inhibition of MDA-MB-231.

表1 不同CLPs的理化性质表征(t检验)
图1 透射电镜下CLPs纳米颗粒的形态观察
图2 HA-CLPs-miR对MDA-MB-231细胞毒性检测结果Ctr为不加任何处理的空白对照组;CLPs为加入正常浓度的CLPs组;HA-CLPs1为加入高浓度HA-CLPs组;HA-CLPs2为加入正常浓度HA-CLPs组
图3 激光共聚焦显微镜对于两种CLPs纳米颗粒转运miR能力的观察Ctr为空白对照组;CLPs为经CLPs转运的非靶向转运miR-205组;HA-CLPs为经HA-CLPs转运的靶向转运miR-205组
图4 流式细胞法定量检测两种CLPs纳米颗粒转运miR的能力 A为MCF-7细胞;B为MDA-MB-231细胞;C为两种CLPs纳米颗粒转运miR后各组平均荧光强度的对比;HA-CLPs+HA为受试前3 h经HA靶向阻断后的HA-CLPs靶向转运miR-205组
图5 EdU实验检测MDA-MB-231细胞的增殖能力hoechst为经hoechst染色后细胞核;EdU为同一镜下经EdU染色后具有增殖能力细胞核;Merge为两种不同染色的融合图像;Ctr为空白对照组;miR-205为通过HA-CLPs转运miR-205组;miR-34a为通过HA-CLPs转运miR-34a组;mix为通过HA-CLPs转运等量的miR-205和miR-34a的共递送组
图6 细胞划痕实验检测不同miR组分对MDA-MB-231细胞迁移的影响 A为加入受试溶剂后0 h;B为加入受试溶剂后24 h时;Ctr为空白对照组;HA-CLPs-miR205为通过HA-CLPs转运miR-205组;HA-CLPs-miR34a为通过HA-CLPs转运miR-34a组;HA-CLPs-miRmix为通过HA-CLPs转运等量的miR-205和miR-34a的共递送组
[1]
Kim K, Lee E, Lee J, et al. Clinicopathologic signature of TNBC patients with good prognosis[J]. Cancer Res, 2009, 69(24 Suppl):4065.
[2]
Park Y, Chang M, Lee S, et al. Heterogeneity of triple negative breast cancer (TNBC): TNBC might be divided into two or more subgroups by clinicopathologic findings[J]. Cancer Res, 2010, 69(24 Supplement):6032.
[3]
Cheang MC, Voduc D, Bajdik C, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype[J]. Clin Cancer Res, 2008, 14(5):1368-1376.
[4]
Chacon RD, Costanzo MV. Triple-negative breast cancer[J]. Breast Cancer Res, 2010, 24(2):S3.
[5]
Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need[J]. Oncologist, 2011, 16(Suppl 1):1-11.
[6]
Gucalp A, Traina TA. Triple-negative breast cancer: adjuvant therapeutic options[J]. Chemother Res Pract, 2011:696208.
[7]
Che HL, Bae IH, Lim KS, et al. Novel fabrication of microRNA nanoparticle-coated coronary stent for prevention of post-angioplasty restenosis[J]. Korean Circ J, 2016, 46(1):23-32.
[8]
Hayward SL, Francis DM, Kholmatov P, et al. Targeted delivery of microRNA125a-5p by engineered lipid nanoparticles for the treatment of HER2 positive metastatic breast cancer[J]. J Biomed Nanotechnol, 2016, 12(3):554-568.
[9]
Zhong Y, Zhang J, Cheng R, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts[J]. J Control Release, 2015, 205:144-154.
[10]
Deng X, Cao M, Zhang J, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer[J]. Biomaterials, 2014, 35(14):4333-4344.
[11]
Pozzi D, Marchini C, Carfarelli F, et al. Transfection efficiency boost of cholesterol-containing lipoplexes[J]. Biochim Biophys Acta, 2012, 1818(9):2335-2343.
[12]
Kong F, Zhou F, Ge L, et al. Mannosylated liposomes for targeted gene delivery[J]. Int J Nanomedicine, 2012, 7:1079-1089.
[13]
Huang Y, Yang T, Zhang W, et al. A novel hydrolysis-resistant lipophilic folate derivative enables stable delivery of targeted liposomes in vivo[J]. Int J Nanomedicine, 2014, 9:4581-4595.
[14]
Carmona S, Jorgensen MR, Kolli S, et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles[J]. Mol Pharm, 2009, 6(3):706-717.
[15]
Kenny GD, Kamaly N, Kalber TL, et al. Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo[J]. J Control Release, 2010, 149(2):111-116.
[16]
Sun X, Pang Z, Ye H, et al. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome[J]. Biomaterials, 2012, 33(3):916-924.
[17]
Piovan C, Palmieri D, Di Leva G, et al. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer[J]. Mol Oncol, 2012, 6(4):458-472.
[18]
Mackiewicz M, Huppi K, Pitt JJ, et al. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA[J]. Breast cancer Res Treat, 2011, 130(2):663-679.
[19]
Adams BD, Parsons C, Slack FJ. The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas[J]. Expert Opin Ther Targets, 2016, 20(6):737-753.
[20]
Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions[J]. Nat Rev Cancer, 2010, 11(1):59-67.
[21]
Lee JS, Anlone M, Pieters E, et al. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes[J]. J Control Release, 2011, 155(2):282-288.
[22]
Sanz V, Coley HM, Silva SR, et al. Protamine and chloroquine enhance gene delivery and expression mediated by RNA-wrapped single walled carbon nanotubes[J]. J Nanosci Nanotechnol, 2012, 12(3):1739-1747.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[5] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[6] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[7] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[8] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[9] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[10] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[14] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[15] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
阅读次数
全文


摘要