切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 160 -164. doi: 10.3877/cma.j.issn.1674-0793.2018.03.002

所属专题: 文献

论著

γ-氨基丁酸B型受体对结肠癌HCT116细胞周期的影响
舒晴1,(), 郭海建1, 刘秀鹏1, 赵素芳1, 刘俊1   
  1. 1. 518035 深圳市第二人民医院消化内科
  • 收稿日期:2017-10-30 出版日期:2018-06-01
  • 通信作者: 舒晴
  • 基金资助:
    深圳市科创委基金项目(20150303192210078)

Effect of gamma aminobutyric acid type B receptor on the cycle of colon cancer HCT116 cell

Qing Shu1,(), Haijian Guo1, Xiupeng Liu1, Sufang Zhao1, Jun Liu1   

  1. 1. Department of Gastroenterology, Shenzhen No.2 People’s Hospital, Shenzhen 518035, China
  • Received:2017-10-30 Published:2018-06-01
  • Corresponding author: Qing Shu
  • About author:
    Corresponding author: Shu Qing, Email:
引用本文:

舒晴, 郭海建, 刘秀鹏, 赵素芳, 刘俊. γ-氨基丁酸B型受体对结肠癌HCT116细胞周期的影响[J/OL]. 中华普通外科学文献(电子版), 2018, 12(03): 160-164.

Qing Shu, Haijian Guo, Xiupeng Liu, Sufang Zhao, Jun Liu. Effect of gamma aminobutyric acid type B receptor on the cycle of colon cancer HCT116 cell[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2018, 12(03): 160-164.

目的

利用人结肠癌细胞株HCT116细胞为研究模型,探究γ-氨基丁酸B型受体(GABABR)/糖原合成激酶3β(GSK-3β)/核转录因子(NF-κB)信号通路对结肠肿瘤细胞HCT116周期的影响,明确GABABR调控结肠癌细胞增殖的机制。

方法

使用人结肠癌细胞株HCT116细胞为模型,构建针对GABABR的shRNA,流式细胞仪检测不同刺激条件下HCT116细胞周期分布,四甲基偶氮唑盐微量酶反应比色法(MTT)、5-溴脱氧尿嘧啶核苷(Brdu)法检测细胞的增殖能力变化。

结果

GABABR可调控HCT116细胞的增殖。GABABR激动剂巴氯芬将HCT116细胞滞留在G1期,GSK-3β激动剂wort能逆转巴氯芬对结肠癌的该作用;GSK-3β抑制剂SB216763处理后,HCT116细胞增殖得到抑制,而NF-κB激动剂PMA可以阻断此作用;NF-κB激动剂PDTC能够回救敲低GABABR所引起的HCT116细胞增殖抑制,Akt抑制剂MK-2206 2HCl能逆转巴氯芬、SB216763对HCT116细胞增殖的抑制作用。

结论

GABABR/GSK-3β/NF-κB信号通路可以调控结肠癌细胞增殖,通过抑制GSK-3β的活性,抑制NF-κB信号通路的激活,将HCT116细胞滞留在G1期。GABABR/GSK-3β/NF-κB信号通路可以作为临床预防和治疗结肠癌的潜在药物靶点之一。

Objective

To investigate the regulating effect of gamma aminobutyric acid B receptor (GABABR)/glycogen synthase kinase 3β (GSK-3β)/NF-κB signaling pathway on cycle of colon cancer cell line HCT116 and to clarify the mechanism of GABABR regulating the increasing of colon cancer.

Methods

HCT116 cells were used as a model to construct shRNA targeting GABABR. Cell cycle distribution of HCT116 cell under different stimuli was detected by flow cytometry. MTT and Brdu assay were used to detect cell proliferation ability.

Results

GABABR could regulate the proliferation of HCT116 cells. Baclofen, the GABABR agonist, arrested HCT116 cells in G1 phase, while GSK-3β agonist wort could reverse this effect. After the treatment of GSK-3β inhibitor SB216763, the proliferation of HCT116 cells was inhibited, which could be blocked by NF-κB agonist PMA. NF-κB agonist PDTC saved the proliferation inhibition of HCT116 cells caused by low GABABR. Akt inhibitor MK-2206 2HCl reversed the inhibitory effect of baclofen and SB216763 on proliferation of HCT116 cells.

Conclusions

The GABABR/GSK-3β/NF-κB signaling pathway can regulate the proliferation of colon cancer cells, results in supression of GSK-3β, and NF-κB activation, and retain HCT116 cells in G1 stage. GABABR/GSK-3β/NF-κB signaling pathway may be one of the potential drug targets for the clinical prevention and treatment of colon cancer.

表1 各基因?qRT-PCR引物序列
图1 GABABR调控人结肠癌HCT116的增殖 A为巴氯芬处理后的实验组与对照组比较,HCT116细胞增殖受到抑制,B为实验组Brdu阳性的细胞明显少于对照组;C为MTT检测细胞增殖结果发现GABABR敲低后促进了HCT116细胞增殖,D为两条GABABR敲低组Brdu阳性的细胞均明显多于对照组
图2 GABABR通过抑制GSK-3β的活性来抑制人结肠癌HCT116的增殖 A为MTT检测细胞增殖结果,实验组的HCT116增殖明显低于对照组,wort处理后抑制作用得到逆转;B为三组Brdu阳性的细胞比较情况,实验组明显少于对照组,wort处理后则Brdu阳性细胞显著增加
图3 GABABR/NF-κB信号通路调控人结肠癌HCT116的增殖 A为三组细胞增殖MTT检测结果,SB216763处理后,HCT116细胞增殖得到抑制,而PMA的加入可以阻断此作用;B为三组Brdu阳性的细胞比较
图4 Akt参与GABABR/GSK-3β/NF-κB信号通路调控人结肠癌HCT116的增殖 MTT检测显示PDTC能够回救敲低GABABR所引起的人结肠癌细胞HCT116的增殖抑制(A),Brdu阳性细胞增加(B);MK-2206 2HCl能逆转巴氯芬对HCT116细胞增殖的抑制作用(C),Brdu阳性细胞增加(D);SB216763能抑制HCT116细胞的增殖,MK-2206 2HCl能逆转SB216763对HCT116细胞增殖的抑制作用(E),Brdu阳性的细胞增加(F);**P<0.05
[1]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[2]
邵荣光. 以细胞周期调控分子为靶点的肿瘤治疗[J]. 中国肿瘤, 2005, 14(11): 706-708.
[3]
Jiang X, Su L, Zhang Q, et al. GABAB receptor complex as a potential target for tumor therapy[J]. J Histochem Cytochem, 2012, 60(4): 269-279.
[4]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30.
[5]
李志琴,章静波. 细胞周期调控与肿瘤(2)[J]. 癌症进展, 2004, 2(2): 146-150.
[6]
Shostak A. Circadian clock, cell division, and cancer: from molecules to organism[J]. Int J Mol Sci, 2017,18(4): E873.
[7]
Maemura K, Shiraishi N, Sakagami K, et al. Proliferative effects of gamma-aminobutyric acid on the gastric cancer cell line are associated with extracellular signal-regulated kinase 1/2 activation[J]. J Gastroenterol Hepatol, 2009, 24(4): 688-696.
[8]
Fava G, Marucci L, Glaser S, et al. gamma-Aminobutyric acid inhibits cholangiocarcinoma growth by cyclic AMP-dependent regulation of the protein kinase A/extracellular signal-regulated kinase 1/2 pathway[J]. Cancer Res, 2005, 65(24): 11437-11446.
[9]
Minuk GY, Zhang M, Gong Y, et al. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma[J]. Hepatology, 2007, 45(3): 735-745.
[10]
Liu Y, Guo F, Dai M, et al. Gammaaminobutyric acid A receptor alpha 3 subunit is overexpressed in lung cancer[J]. Pathol Oncol Res, 2009, 15(3): 351-358.
[11]
Thaker PH, Yokoi K, Jennings NB, et al. Inhibition of experimental colon cancer metastasis by the GABA-receptor agonist nembutal[J]. Cancer Biol Ther, 2005, 4(7): 753-758.
[12]
Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling[J]. Prog Neurobiol, 2001, 65(4): 391-426.
[13]
Huang Q, Zhu CL, Liu CH, et al. Gamma-aminobutyric acid binds to GABAb receptor to inhibit cholangiocarcinoma cells growth via the JAK/STAT3 pathway[J]. Dig Dis Sci, 2013, 58(3): 734-743.
[14]
Wang T, Huang W, Chen F. Baclofen, a GABAB receptor agonist, inhibits human hepatocellular carcinoma cell growth in vitro and in vivo[J]. Life Sci, 2008, 82(9-10): 536-541.
[15]
Gupta C, Kaur J, Tikoo K. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions[J]. Exp Cell Res, 2014, 324(1): 75-83.
[16]
Li H, Huang K, Liu X, et al. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3β/NF-κB signaling pathway[J]. Oxid Med Cell Longev, 2014, 2014: 241864.
[17]
Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling[J]. Cell, 2008, 132(3): 344-362.
[18]
DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1): 379-400.
[19]
周薇,陶绍青,陈代杰, 等. 微生物来源的作用于细胞信号传导及细胞周期的抗肿瘤化合物[J]. 药学进展, 2007, 31(7): 289-293.
[20]
马晓方,杜晓光,辛现良, 等. 肿瘤细胞恶性增殖和细胞周期调控改变的分子机制[J]. 现代生物医学进展, 2009, 9(5): 950-953.
[1] 李怡泉, 谢宇斌, 胡宏, 张燕茹, 陈图锋. 基于生物信息学分析HDAC8在结肠癌中的临床意义及其与免疫浸润的关系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 275-281.
[2] 崔宏帅, 冯丽明, 东维玲, 韩博. 腹腔镜右半结肠癌D3根治术+IGLN清扫术治疗局部进展期结肠肝曲癌的临床效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 566-569.
[3] 丁志翔, 于鹏, 段绍斌. 血浆BRAF基因检测对腹腔镜右半结肠癌D3根治术中行幽门淋巴结清扫的指导价值[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 570-573.
[4] 王维花, 王楠, 乔庆, 罗红. 完全腹腔镜右半结肠癌切除术两种腔内消化道重建方案对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 574-577.
[5] 李晓鸥, 杨鹤鸣, 王国栋, 林海冠, 杨建武. 不同入路腹腔镜左半结肠癌根治术治疗效果对比[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 377-380.
[6] 孙龙凤, 侯高峰, 王幼黎, 刘磊. 腹腔镜下右半结肠癌D3根治术中SMA或SMV入路的选择[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 438-441.
[7] 张聃, 王毅, 冯文迪, 方兴中. 完整结肠系膜切除术与传统根治术治疗结肠癌对患者生存期的影响观察[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 279-282.
[8] 杜彦斌, 黄涛, 寇天阔, 石英. 双镜联合根治术与腹腔镜根治术在早期结肠癌患者中的应用效果[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 275-278.
[9] 金田力, 袁文正, 付涛. 单孔腹腔镜右半结肠癌根治术后尿管拔除时机探讨[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 271-274.
[10] 何慧玲, 鲁祖斌, 冯嘉莉, 梁声强. 术前外周血NLR和PLR对结肠癌术后肝转移的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 682-687.
[11] 关国欣, 罗福文. 结肠癌合并急性梗阻的个性化处理[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 459-463.
[12] 石阳, 于剑锋, 曹可, 翟志伟, 叶春祥, 王振军, 韩加刚. 可扩张金属支架置入联合新辅助化疗治疗完全梗阻性左半结肠癌围手术期并发症分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 464-471.
[13] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
阅读次数
全文


摘要