切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2018, Vol. 12 ›› Issue (04) : 223 -227. doi: 10.3877/cma.j.issn.1674-0793.2018.04.003

所属专题: 文献

论著

利用人体成分分析仪检测围手术期患者体液含量及分布变化的临床意义
杜妍妍1, 陈强谱1,(), 孙宝房1, 冀海斌1   
  1. 1. 256600 滨州医学院附属医院肝胆胰外科 临床营养支持中心 山东省临床营养与代谢重点实验室
  • 收稿日期:2018-01-18 出版日期:2018-08-01
  • 通信作者: 陈强谱
  • 基金资助:
    山东省普外科临床重点专科建设项目(ZDZK2013SJ09)

Clinical significance of detecting body fluid volume and distribution using human body composition analyzer among perioperative patients

Yanyan Du1, Qiangpu Chen1,(), Baofang Sun1, Haibin Ji1   

  1. 1. Department of Hepatobiliary and Pancreatic Surgery, Clinical Nutrition Support Center, Clinical Nutrition and Metabolic Key Laboratory of Shandong Province, Binzhou Medical University Affiliated Hospital, Binzhou 256600, China
  • Received:2018-01-18 Published:2018-08-01
  • Corresponding author: Qiangpu Chen
  • About author:
    Corresponding author: Chen Qiangpu, Email:
引用本文:

杜妍妍, 陈强谱, 孙宝房, 冀海斌. 利用人体成分分析仪检测围手术期患者体液含量及分布变化的临床意义[J]. 中华普通外科学文献(电子版), 2018, 12(04): 223-227.

Yanyan Du, Qiangpu Chen, Baofang Sun, Haibin Ji. Clinical significance of detecting body fluid volume and distribution using human body composition analyzer among perioperative patients[J]. Chinese Archives of General Surgery(Electronic Edition), 2018, 12(04): 223-227.

目的

通过人体成分分析仪检测患者围手术期的体液含量及分布变化,探讨体液含量及其变化在临床中的意义及应用价值。

方法

本研究采用横断面研究方法,选择2016年3月至9月滨州医学院附属医院收治的患者123例,详细记录患者的临床资料,并进行人体成分分析检测。分析患者术前1 d与术后第1、3、5、7天细胞内液(ICW)、细胞外液(ECW)、总体液(TBW)的数据,观察术后ICW、ECW、TBW、ICW/TBW、ECW/TBW的变化。按照术后第1天ECW/TBW分组,分析患者术后第1天ECW/TBW的变化对白细胞、血红蛋白、白蛋白及临床预后的影响。

结果

患者术后早期ICW、ECW、TBW均增加,随后逐渐下降至术前水平;术后第1天ICW/TBW达到最低,ECW/TBW达到最高,随后逐渐恢复至正常。术后第1天ECW/TBW比值越高(>0.400)的患者血红蛋白及白蛋白的水平越低,术后腹腔引流管的放置时间、术后住院时间越长,术后并发症的发生率及死亡率越高。

结论

围手术期体液含量的检测对患者预后的评估、降低术后并发症具有重要的指导价值。人体成分分析仪是一种对围手术期患者的体液含量进行有效测量的工具,具有重要临床应用价值。

Objective

To explore the meaning and clinical value of detecting body fluid volume and distribution using human body composition analyzer among perioperative patients.

Methods

This study was conducted using the cross-sectional research method. A total of one hundred and twenty-three patients who underwent abdominal surgery in Binzhou Medical University Affiliated Hospital from March to August 2016 were enrolled. The volume of intracellular water (ICW), extracellular water (ECW) and total body water (TBW) was detected by Inbody S10 1 d before operation (PreD1) and 1, 3, 5, 7 postoperatively (POD 1, 3, 5, 7). Furthermore, the effects of ECW/TBW on white blood cells, hemoglobin, albumin and clinical prognosis on POD 1 were analyzed.

Results

ICW, ECW, and TBW were increased in the early stage of postoperation. On POD 1, ICW/TBW reached the lowest level, ECW/TBW reached the highest, and then gradually recovered to normal. The lower the level of hemoglobin and albumin in patients, the higher the ratio of ECW/TBW (>0.400). The longer the time of postoperative abdominal drainage and hospital stay, the higher the incidence of postoperative complications and mortality.

Conclusions

The measurement of body fluid content in the perioperative period has important guiding value for evaluating the prognosis of the patients and reducing the postoperative complications. As a reliable tool, human body composition analyzer has important clinical significance.

表1 123例患者不同测量时间点体液指标测量结果(±s)
图1 123例患者围手术期ECW/TBW和ICW/TBW的变化趋势 与术前相比,*P<0.05
表2 123例患者术后第1天ECW/TBW比值与患者白细胞、血红蛋白、白蛋白水平的关系(±s)
表3 术后第1天ECW/TBW比值与患者术后结局的关系
[1]
Lucas CE. Resuscitation of the injured patient: the three phases of treatment[J]. Surg Clin North Am, 1977, 57(1): 3-15.
[2]
Malbrain ML, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice[J]. Anaesthesiol Intensive Ther, 2014, 46(5): 361-380.
[3]
Bellomo R, Cass A, Cole L, et al. An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy trial[J]. Crit Care Med, 2012, 40(6): 1753-1760.
[4]
Salzwedel C, Puig J, Carstens A, et al. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study[J]. Crit Care, 2013, 17(5): R191.
[5]
El-Kateb S, Sridharan S, Farrington K, et al. Comparison of equations of resting and total energy expenditure in peritoneal dialysis patients using body composition measurements determined by multi-frequency bioimpedance[J]. Clin Nutr, 2018, 37(2): 646-650.
[6]
Tangvoraphonkchai K, Davenport A. Changes in body composition following haemodialysis as assessed by bioimpedance spectroscopy[J]. Eur J Clin Nutr, 2017, 71(2): 169-172.
[7]
Tangvoraphonkchai K, Davenport A. Do bioimpedance measurements of over-hydration accurately reflect post-haemodialysis weight changes?[J]. Nephron, 2016, 133(4): 247-252.
[8]
Choi JW, Kim DK, Lee SW, et al. Efficacy of intravenous fluid warming during goal-directed fluid therapy in patients undergoing laparoscopic colorectal surgery: a randomized controlled trial[J]. J Int Med Res, 2016, 44(3): 605-612.
[9]
Michard F, Giglio MT, Brienza N. Perioperative goal-directed therapy with uncalibrated pulse contour methods: impact on fluid management and postoperative outcome[J]. Br J Anaesth, 2017, 119(1): 22-30.
[10]
LMS M, Silva JM, MJC C, et al. A pragmatic multi-center trial of goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery[J]. BMC Anesthesiol, 2017, 17(1): 70.
[11]
Yuan J, Sun Y, Pan C, et al. Goal-directed fluid therapy for reducing risk of surgical site infections following abdominal surgery - A systematic review and meta-analysis of randomized controlled trials[J]. Int J Surg, 2017, 39: 74-87.
[12]
Rahbari NN, Zimmermann JB, Schmidt T, et al. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery[J]. Br J Surg, 2009, 96(4): 331-341.
[13]
Lukaski HC, Bolonchuk WW, Hall CB, et al. Validation of tetrapolar bioelectrical impedance method to assess human body composition[J]. J Appl Physiol (1985), 1986, 60(4): 1327-1332.
[14]
陈强谱,傅廷亮,欧坤. 人体组成的活体测量技术及评价[J]. 生物医学工程学杂志, 2007, 24(4): 954-958.
[15]
Milani GP, Groothoff JW, Vianello FA, et al. Bioimpedance and fluid status in children and adolescents treated with dialysis[J]. Am J Kidney Dis, 2017, 69(3): 428-435.
[16]
Aguiar PV, Santos O, Teixeira L, et al. Overhydration prevalence in peritoneal dialysis - A 2 year longitudinal analysis[J]. Nefrologia, 2015, 35(2): 189-196.
[17]
Antlanger M, Josten P, Kammer M, et al. Blood volume-monitored regulation of ultrafiltration to decrease the dry weight in fluid-overloaded hemodialysis patients: a randomized controlled trial[J]. BMC Nephrol, 2017, 18(1): 238.
[18]
Chong JU, Nam S, Kim HJ, et al. Exploration of fluid dynamics in perioperative patients using bioimpedance analysis[J]. J Gastrointest Surg, 2016, 20(5): 1020-1027.
[19]
Yilmaz S, Yildirim Y, Taylan M, et al. The relationship of fluid overload as assessed by bioelectrical impedance analysis with pulmonary arterial hypertension in hemodialysis patients[J]. Med Sci Monit, 2016, 22: 488-494.
[20]
Finnerty CC, Mabvuure NT, Ali A, et al. The surgically induced stress response[J]. JPEN J Parenter Enteral Nutr, 2013, 37(5 Suppl): 21S-29S.
[21]
Milosavljevic SB, Pavlovic AP, Trpkovic SV, et al. Influence of spinal and general anesthesia on the metabolic, hormonal, and hemodynamic response in elective surgical patients[J]. Med Sci Monit, 2014, 20: 1833-1840.
[22]
Allen SJ. Fluid therapy and outcome: balance is best[J]. J Extra Corpor Technol, 2014, 46(1): 28-32.
[23]
吴圣楠,齐玉梅,陈亚军, 等. 多频生物电阻抗对肝硬化患者细胞内外液的探讨[J]. 世界华人消化杂志. 2013, 21(36): 4170-4174.
[24]
Kim EJ, Choi MJ, Lee JH, et al. Extracellular fluid/intracellular fluid volume ratio as a novel risk indicator for all-cause mortality and cardiovascular disease in hemodialysis patients[J]. PLoS One, 2017, 12(1): e0170272.
[25]
Fan S, Sayed RH, Davenport A. Extracellular volume expansion in peritoneal dialysis patients[J]. Int J Artif Organs, 2012, 35(5): 338-345.
[26]
Hara N, Iwasa M, Iwata K, et al. Value of the extracellular water ratio for assessment of cirrhotic patients with and without ascites[J]. Hepatol Res, 2009, 39(11): 1072-1079.
[27]
Tai R, Ohashi Y, Mizuiri S, et al. Association between ratio of measured extracellular volume to expected body fluid volume and renal outcomes in patients with chronic kidney disease: a retrospective single-center cohort study[J]. BMC Nephrol, 2014, 15: 189.
[28]
Nongnuch A, Campbell N, Stern E, et al. Increased postdialysis systolic blood pressure is associated with extracellular overhydration in hemodialysis outpatients[J]. Kidney Int, 2015, 87(2): 452-457.
[1] 何静, 刘瀚旻. 蛋白质组学在先天性心脏病中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(06): 627-633.
[2] 刘光磊, 杨军, 李成荣. 儿童特发性肾病综合征低IgG血症机制:哺乳动物雷帕霉素靶蛋白过表达对滤泡辅助性T细胞数量的可能影响[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(02): 171-180.
[3] 罗可人, 唐军. 肺表面活性物质的成分和功能研究现状[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(02): 137-142.
[4] 吴秀霞, 陈玉霞, 范倩倩. 感染性肺炎新生儿免疫功能系统评价及临床意义[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(02): 128-133.
[5] 杨智彬, 申恩瑞, 潘丽, 赵丽惠, 王聪, 杨艳霞, 李阳, 王巧凤, 马世武. 不同临床类型结核病患者血清白细胞介素-21水平及其临床意义[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(01): 48-53.
[6] 张宇珂, 杜顺达, 毛一雷. 尿液检测在原发性肝癌中的应用[J]. 中华普通外科学文献(电子版), 2022, 16(03): 225-230.
[7] 余向南, 袁野, 路小欢, 曹阳, 蔡明, 陶凯雄, 王征, 王国斌. 直肠癌前切除术后吻合口漏的预测研究[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 111-114.
[8] 周天保. B细胞介导的体液免疫应答在肝移植急性排斥反应中的作用[J]. 中华移植杂志(电子版), 2019, 13(03): 252-254.
[9] 周子健, 吴忠. CT在泌尿系结石诊疗中的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 299-302.
[10] 任丽, 黄铭娜, 冯季灵, 吴锡骅, 苏施雅. 脑梗死患者的细胞免疫与体液免疫的变化规律研究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(06): 343-347.
[11] 严陈燕, 邬步云, 王雅杰, 徐琳, 许雪强, 张承宁, 黄智敏, 任海滨, 吴晶晶, 毛慧娟, 邢昌赢. 单次人体成分分析参数对住院尿毒症透析患者的预后价值[J]. 中华肾病研究电子杂志, 2019, 08(04): 163-169.
[12] 宋艳, 魏碧霞, 陶勇, 阿依古孜·克里木, 丁琳. 眼内液检测在明确葡萄膜炎病因中应用的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 82-87.
[13] 刘瑄, 陶勇. 用好眼内液检测[J]. 中华眼科医学杂志(电子版), 2018, 08(05): 193-201.
[14] 刘军. 危重病免疫功能监测研究进展[J]. 中华重症医学电子杂志, 2019, 05(01): 56-63.
[15] 张珂, 张聪, 高静, 王海辰, 韩彩娜, 张微, 刘俊峰. 人食管下括约肌G蛋白耦联受体的表达及作用机制[J]. 中华胸部外科电子杂志, 2019, 06(04): 248-252.
阅读次数
全文


摘要