切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2019, Vol. 13 ›› Issue (06) : 435 -440. doi: 10.3877/cma.j.issn.1674-0793.2019.06.004

所属专题: 文献

论著

芦荟多糖调控Th17/Treg细胞平衡缓解肠炎的实验研究
付正伟1, 王丽霞2, 葛海燕3,()   
  1. 1. 201200 上海,同济大学附属东方医院胃肠外科
    2. 445000 恩施,武汉大学恩施临床学院消毒供应中心
    3. 314200 浙江省平湖市第二人民医院普外科
  • 收稿日期:2019-03-23 出版日期:2019-12-01
  • 通信作者: 葛海燕
  • 基金资助:
    浙江省嘉兴市科技计划项目(2018AD32155)

Experimental study of the aloe polysaccharides relieving enteritis by regulating Th17/Treg cell balance

Zhengwei Fu1, Lixia Wang2, Haiyan Ge3,()   

  1. 1. Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 201200, China
    2. Disinfection Supply Center, Enshi Clinical College, Wuhan University, Enshi 445000, China
    3. Department of General Surgery, the Second People’s Hospital of Pinghu City, Pinghu 314200, China
  • Received:2019-03-23 Published:2019-12-01
  • Corresponding author: Haiyan Ge
  • About author:
    Corresponding author: Ge Haiyan, Email:
引用本文:

付正伟, 王丽霞, 葛海燕. 芦荟多糖调控Th17/Treg细胞平衡缓解肠炎的实验研究[J]. 中华普通外科学文献(电子版), 2019, 13(06): 435-440.

Zhengwei Fu, Lixia Wang, Haiyan Ge. Experimental study of the aloe polysaccharides relieving enteritis by regulating Th17/Treg cell balance[J]. Chinese Archives of General Surgery(Electronic Edition), 2019, 13(06): 435-440.

目的

探讨芦荟提取液芦荟多糖是否通过调节辅助性T细胞(Th17)与调节性T细胞(Treg)免疫失衡,缓解2,4,6-三硝基苯磺酸(2,4,6-TNBS)诱导的肠炎。

方法

用完全随机数字法将30只SD大鼠分成正常组(PBS液灌肠)、芦荟多糖治疗组(TNBS-乙醇液灌肠+肛门注入芦荟多糖)及模型组(TNBS-乙醇液灌肠),每组10只。记录大鼠体质量变化、疾病活动指数(DAI)。取结肠组织进行宏、微观损伤评分及病理学检查;检测结肠组织髓过氧化物酶(MPO)活性以及细胞因子转化生长因子(TGF-β)、白细胞介素(IL)-10、IL-17A、IL-6 mRNA的表达,转录因子RORγt、Foxp3+及信号转导和转录激活因子(STAT)3、5蛋白表达;检测血浆中细胞因子IL-1β、肿瘤坏死因子α(TNF-α)、肿瘤坏死因子α刺激基因6(TSG-6)的表达。

结果

与模型组比较,芦荟多糖治疗组的DAI、MPO、组织病理学评分及血浆细胞因子IL-1β、TNF-α的蛋白表达显著降低,血浆TSG-6浓度增加。芦荟多糖抑制了结肠组织中促炎细胞因子IL-17A、IL-6 mRNA表达,以及转录因子RORγt活化及STAT3磷酸化,促进了抑炎细胞因子IL-10、TGF-βmRNA表达,以及Foxp3+表达及STAT5磷酸化。

结论

芦荟多糖可以通过纠正Th17/Treg细胞失衡,缓解TNBS诱导的实验性肠炎。

Objective

To investigate whether aloe polysaccharide from aloe extract can alleviate the enteritis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) via correcting Th17/Treg cell imbalance.

Methods

Thirty SD rats were divided into normal group (enema with phosphate buffered saline), aloe polysaccharide treatment group (enema with TNBS and ethanol and anal injection of aloe polysaccharide) andmodel group (enema with TNBS and ethanol) by complete digital random method, with 10 rats in each group. The bodyweight change and disease activity index (DAI) were recorded. The macroscopic and microscopic damage scoring of colon tissue were examined histopathologically. The myeloperoxidase (MPO) activity, mRNA expression level of cytokine transforming growth factor (TGF-β), interleukin (IL)-10, IL-17A and IL-6, as well as the protein expression of transcription factors Foxp3+, RORγt and the signal transducer and activator of transcription (STAT)3, STAT5 were detected in the colon tissue. The expression of IL-1β, tumor necrosis factor alpha (TNF-α) and anti-tumor necrosis factor alpha stimulating gene 6 (TSG-6) in the plasma were detected.

Results

Compared with the model group, DAI, MPO activity, histopathological scores and the protein expression of the plasma cytokines IL-1βand TNF-αin the aloe polysaccharide treatment group were significantly decreased, but the concentration of TSG-6 in the plasma was increased. Aloe polysaccharide inhibited the mRNA expression of pro-inflammatory cytokines IL-17A and IL-6 as well as transcription factor RORγt activation and STAT3 phosphorylation in colon tissue, but promoted the mRNA expression of anti-inflammatory cytokines IL-10, TGF-βas well as transcription factor Foxp3+activation and STAT5 phosphorylation.

Conclusion

Aloe polysaccharide can alleviate TNBS-induced experimental enteritis by correcting Th17/Treg cell imbalance.

表1 大鼠肠炎模型的疾病活动指数(DAI)评分
表2 目的基因的引物序列
表3 三组大鼠治疗后相对体质量变化(%,±s
表4 三组大鼠治疗后疾病活动指数(DAI)评分变化(±s
图1 芦荟多糖对IBD模型大鼠结肠宏观损伤的影响 A为结肠的长度测量,治疗组结肠长于模型组;B为结肠黏膜的宏观损伤,治疗组结肠黏膜炎性增厚,无溃疡、坏死,而模型组的结肠黏膜水肿、渗出、坏死;正常组黏膜完整、无水肿
表5 三组大鼠结肠长度、宏/微观损伤评分及髓过氧化物酶(MPO)表达(±s
图2 正置荧光显微镜下观察芦荟多糖对肠炎的病理学改变(苏木精-伊红染色 ×100) 正常组结肠黏膜、腺体完整;治疗组见黏膜腺体增生,少量的炎性细胞浸润;模型组结肠黏膜腺体结构破坏,大量的炎性细胞浸润,肠壁增厚
表6 三组大鼠结肠组织中炎性细胞因子mRNA表达分析(2-ΔΔCt,±s)
图3 芦荟多糖对肠炎模型大鼠结肠组织内转录因子RORγt、Foxp3+、STAT3及STAT5蛋白表达的影响 A为Western blotting条带B为条带灰度值分析*P<0.05
表7 三组大鼠血浆中细胞因子的表达分析(ng/L, ±s)
[1]
国家药典委员会. 中华人民共和国药典[M].北京: 中国医药科技出版社, 2010: 151-152.
[2]
El-Matary W, Moroz SP, Bernstein CN. Inflammatory bowel disease in children of Manitoba: 30 years’ experience of a tertiary center[J]. J Pediatr Gastroenterol Nutr, 2014, 59(6): 763-766.
[3]
Abegunde AT, Muhammad BH, Bhatti O, et al. Environmental risk factors for inflammatory bowel diseases: Evidence based literature review[J]. World J Gastroenterol, 2016, 22(27): 6296-6317.
[4]
傅继华, 温涛, 徐琛, 等. 芦荟多糖对动物实验性胃溃疡的影响[J]. 中草药, 2006, 37(6): 894-897.
[5]
Obermeier F, Kojouharoff G, Hans W, et al. Interferon-gamma (IFN-gamma)- and tumour necrosis factor (TNF)-induced nitric oxide as toxic effector molecule in chronic dextran sulphate Sodium (DSS)-induced colitis in mice[J]. Clin Exp Immunol, 1999, 116(2): 238-245.
[6]
Rivera DG, Hernández I, Merino N, et al. Mangifera indica L. extract (Vimang) and mangiferin reduce the airway inflammation and Th2 cytokines in murine model of allergic asthma[J]. J Pharm Pharmacol, 2011, 63(10): 1336-1345.
[7]
李天东, 罗英, 李俊刚. 芦荟多糖生物活性研究进展[J]. 安徽农业科学, 2009, 37(5): 2033-2035.
[8]
Tozaki H, Fujita T, Odoriba T, et al. Validation of a pharmacokinetic model of colon-specific drug delivery and the therapeutic effects of chitosan capsules containing 5-aminosalicylic acid on 2,4,6-trinitrobenzenesulphonic acid-induced colitis in rats[J]. J Pharm Pharmacol, 1999, 51(10): 1107-1112.
[9]
Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease[J]. Nat Rev Immunol, 2003, 3(7): 521-533.
[10]
Iwańczak BM, Ryżko J, Jankowski P, et al. Evaluation of the infliximab therapy of severe form of pediatric Crohn’s disease in Poland: Retrospective, multicenter studies[J]. Adv Clin Exp Med, 2017, 26(1): 51-56.
[11]
Nasef A, Mathieu N, Chapel A, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G[J]. Transplantation, 2007, 84(2): 231-237.
[12]
Dyer DP, Thomson JM, Hermant A, et al. TSG-6 inhibits neutrophil migration via direct interaction with the chemokine CXCL8[J]. J Immunol, 2014, 192(5): 2177-2185.
[13]
Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages[J]. Blood, 2011, 118(2): 330-338.
[14]
Goodman WA, Cooper KD, McCormick TS. Regulation generation: the suppressive functions of human regulatory T cells[J]. Crit Rev Immunol, 2012, 32(1): 65-79.
[15]
Bullens DM, Decraene A, Seys S, et al. IL-17A in human respiratory diseases: innate or adaptive immunity? Clinical implications[J]. Clin Dev Immunol, 2013, 2013: 840315.
[16]
Huang G, Wang Y, Chi H. Regulation of TH17 cell differentiation by innate immune signals[J]. Cell Mol Immunol, 2012, 9(4): 287-295.
[17]
Sheng W, Yang F, Zhou Y, et al. STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation[J]. Cell Res, 2014, 24(12): 1387-1402.
[18]
Goodman WA, Young AB, McCormick TS, et al. STAT3 phosphorylation mediates resistance of primary human T cells to regulatory T cell suppression[J]. J Immunol, 2011, 186(6): 3336-3345.
[1] 冯晓玲, 高鸿亮. ω-3 PUFAs对小鼠炎症性肠病调节性T细胞影响的研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 354-358.
[2] 陈文豪, 张亦超, 覃海波, 范洲, 胡航, 钱群, 江从庆, 丁召. 顺蠕动侧-侧吻合在克罗恩病结肠部分切除中的应用[J]. 中华结直肠疾病电子杂志, 2021, 10(05): 541-546.
[3] 谭惠丰, 曹沛莲, 张慧, 强胜. Notch信号通路对IgA肾病大鼠外周血Th17细胞数量及功能的影响[J]. 中华肾病研究电子杂志, 2021, 10(05): 259-264.
[4] 高超, 巢杰, 邱海波. T-bet:脓毒症免疫失衡中Th17细胞的新型调节分子[J]. 中华重症医学电子杂志, 2023, 09(03): 280-285.
[5] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[6] 余佳丽, 江学良. 从炎症性肠病治疗策略转变看生物制剂应用进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 129-134.
[7] 廖想, 李爽, 曾瑶. 2012-2021年粪菌移植研究的趋势及热点分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 93-99.
[8] 葛文松. 炎症性肠病双靶向联合治疗[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 65-67.
[9] 吕苏聪, 钟国强, 李瑾, 李明松. 炎症性肠病相关心理问题及诊治进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 33-38.
[10] 韦可艺, 徐昌青, 杨静. 纳米药物在炎症性肠病生物制剂靶向治疗中的应用[J]. 中华消化病与影像杂志(电子版), 2022, 12(06): 367-372.
[11] 王梦, 徐东燕, 张晓雨, 赵海剑. 伴有肛周疾病的炎症性肠病患者肛门功能及生活质量分析[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 224-227.
[12] 杨翠萍, 全旭, 孙顺昌, 张梦茵, 张金叶, 贾颖, 俞骁珺, 谢玲, 蔡波尔, 吴云林, 陈平. 上海市嘉定区炎症性肠病患者的粪便钙卫蛋白检测研究[J]. 中华消化病与影像杂志(电子版), 2021, 11(05): 193-195.
[13] 江学良. 关于制订我国炎症性肠病中西医结合质量控制标准的建议[J]. 中华消化病与影像杂志(电子版), 2020, 10(06): 241-243.
[14] 费诗茵, 陈洁, 刘军, 王婷婷, 周盟, 何家俊. 炎症性肠病相关药物性胰腺炎的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(03): 213-217.
[15] 杨全龙, 范崇熙, 石学汇, 徐梦楠, 孙涛, 宁守斌. 炎症性肠病发病机制及与肠道菌群关系的研究进展[J]. 中华胃肠内镜电子杂志, 2022, 09(03): 148-151.
阅读次数
全文


摘要