切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 411 -415. doi: 10.3877/cma.j.issn.1674-0793.2020.06.003

所属专题: 文献

论著

促肝细胞生长素通过调节核呼吸因子1和线粒体转录因子A表达对大鼠肝脏缺血再灌注损伤保护作用的研究
罗燕青1, 梅永1, 冯春林1,()   
  1. 1. 563000 遵义医科大学第三附属医院 遵义市第一人民医院肝胆外科
  • 收稿日期:2020-01-04 出版日期:2020-12-01
  • 通信作者: 冯春林
  • 基金资助:
    贵州省科学技术基金项目(黔科合SY字〔2009〕3051)

Protective effect of promoting hepatocyte growth factor in rats’ hepatic ischemia-reperfusion injury byregulating the expression of NRF-1 /TFAM

Yanqing Luo1, Yong Mei1, Chunlin Feng1,()   

  1. 1. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Zunyi Medical University, the First People’s Hospital of Zunyi, Zunyi 563000, China
  • Received:2020-01-04 Published:2020-12-01
  • Corresponding author: Chunlin Feng
  • About author:
    Corresponding author: Feng Chunlin, Email:
引用本文:

罗燕青, 梅永, 冯春林. 促肝细胞生长素通过调节核呼吸因子1和线粒体转录因子A表达对大鼠肝脏缺血再灌注损伤保护作用的研究[J]. 中华普通外科学文献(电子版), 2020, 14(06): 411-415.

Yanqing Luo, Yong Mei, Chunlin Feng. Protective effect of promoting hepatocyte growth factor in rats’ hepatic ischemia-reperfusion injury byregulating the expression of NRF-1 /TFAM[J]. Chinese Archives of General Surgery(Electronic Edition), 2020, 14(06): 411-415.

目的

研究促肝细胞生长素(PHGF)是否通过上调核呼吸因子1(NRF-1)和线粒体转录因子A(TFAM)表达对大鼠肝脏缺血再灌注损伤(HIRI)起到保护作用。

方法

首先将备选干扰序列导入大鼠肝星状细胞HSC-T6中,通过检测NRF-1、TFAM蛋白及mRNA表达,筛选出干扰效果最强序列;然后将108只SD大鼠依据再灌注时间不同(1、3、7 d)随机分为3组,每组36只。每个时间点大鼠又分为实验组和对照组,每组18只,实验组术前4 d分别尾静脉注射相应慢病毒颗粒(1×108个/只),术后每只大鼠腹腔注射PHGF 15 μg/d,对照组术后每只大鼠每日腹腔注射等量0.9%氯化钠溶液。实验组和对照组分别设置3个组,每组6只,分别为阴性沉默组、靶向沉默NRF-1组、靶向沉默TFAM组,检测每个时间点大鼠血清丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、总胆红素(TBIL)水平及肝组织NRF-1、TFAM mRNA表达水平,苏木精-伊红染色再灌注7 d时大鼠肝脏病理学改变。

结果

从备选序列中选出干扰TFAM、NRF-1表达效果最强序列分别为T2、N3,使用PHGF对HIRI模型RNAi大鼠处理发现,与阴性沉默组比较,降低NRF-1、TFAM mRNA表达水平可导致ALT、AST、TBIL水平明显升高(P<0.05)。使用PHGF处理的实验组大鼠较对照组大鼠ALT、AST、TBIL水平明显降低,以第7天差异最为明显,且NRF-1、TFAM mRNA明显升高(P<0.05)。

结论

PHGF通过上调NRF-1和TFAM表达对大鼠HIRI起到保护作用。

Objective

To investigate whether rats’ hepatic ischemia-reperfusion injury (HIRI) can be promoted by hepatocyte growth factor (PHGF) by up-regulating the expression of nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM).

Methods

First, the candidate interference sequences were introduced into HSC-T6 of rat hepatic satellate cells, and the expression of NRF-1, TFAM proteins and mRNA was detected to select the strongest interference sequences. Second, 108 SD rats were randomly divided into three groups according to different reperfusion time (1,3,7 d), with 36 rats in each group. At each time point, the rats were divided into two groups with 18 rats in each group, which were the experimental group and the control group (in the experimental group, the corresponding lentiviral particles were injected into the tail vein, 4 days before the operation). The experimental group and the control group were set into 3 groups, 6 rats in each group, respectively a negative silencing group, a targeted silencing NRF-1 group, and a targeted silencing TFAM group. Rat serum alanine aminotransferase (ALT) was detected at each time point, aspartate aminotransferase (AST), total bilirubin (TBIL) content, and expression levels of NRF-1 and TFAM mRNA in liver tissue, pathological changes in rat liver after 7 days of HE staining.

Results

T2 and N3 were selected from the candidate sequences to interfere with the expression of TFAM and NRF-1. Treatment of HIRI model RNAi rats with PHGF showed that compared with the negative silencing group, reducing the levels of NRF-1 and TFAM mRNA would result in significantly higher levels of ALT, AST, and TBIL (P<0.05). After treatment with PHGF, the contents of ALT, AST, and TBIL were significantly lower than those treated with normal saline, and the differences were most obvious on the 7th day, and the increase of NRF-1 and TFAM mRNA increased significantly (P<0.05).

Conclusion

PHGF can protect HIRI by up-regulating the expression of NRF-1 and TFAM.

表1 各组细胞靶基因mRNA相对表达量(±sn=6)
图1 不同序列降低线粒体转录因子A(TFAM)蛋白表达水平与T1、T3序列比较,*P<0.05
图2 不同序列降低核呼吸因子1(NRF-1)蛋白表达水平与N1、N2序列比较,*P<0.05
图3 各组大鼠不同再灌注时间血清丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、总胆红素(TBIL)水平测定 A为阴性沉默组;B为靶向沉默TFAM组;C为靶向沉默NRF-1组;1为术后注射促肝细胞生长素(PHGF);2为术后注射0.9%氯化钠溶液
表2 术后各组大鼠目的基因相对表达水平变化情况(±sn=6)
图4 再灌注7 d时各组大鼠肝脏组织苏木精-伊红染色结果(×200) A为阴性沉默组,注射PHGF;B为阴性沉默组,注射0.9%氯化钠溶液;C为靶向沉默TFAM组,注射PHGF;D为靶向沉默TFAM组,注射0.9%氯化钠溶液;E为靶向沉默NRF-1组,注射PHGF;F为靶向沉默NRF-1组,注射0.9%氯化钠溶液
[1]
Calatayud D, Cabús SS, Sampson J, et al. Hepatic resection: A safe and effective surgery[J]. Cir Esp, 2017, 95(8): 437-446.
[2]
谢汉镔, 葛缅, 池信锦, 等.肝移植围手术期缺血-再灌注胃氧化损伤发生机制[J/CD]. 中华肝脏外科手术学电子杂志, 2015, 4(4): 254-258.
[3]
Ma Z, Xin Z, Di W, et al. Melatonin and mitochondrial function during ischemia/reperfusion injury[J]. Cell Mol Life Sci, 2017, 74(21): 3989-3998.
[4]
谢莹, 徐文胜, 高月求, 等. 注射用促肝细胞生长素治疗急慢性肝炎疗效及用药安全性[J]. 中国新药杂志, 2019, 28(22): 2729-2734.
[5]
Cao XF, Jin SZ, Sun L, et al. Therapeutic effects of hepatocyte growth factor-overexpressing dental pulp stem cells on liver cirrhosis in a rat model[J]. Sci Rep, 2017, 7(1): 15812.
[6]
Klinge CM. Estrogenic control of mitochondrial function[J]. Redox Biol, 2020, 31: 101435.
[7]
King GA, Hashemi SM, Taris KH, et al. Acetylation and phosphorylation of human TFAM regulate TFAM-DNA interactions via contrasting mechanisms[J]. Nucleic Acids Res, 2018, 46(7): 3633-3642.
[8]
Tang C, Lin H, Wu Q, et al. Recombinant human augmenter of liver regeneration protects hepatocyte mitochondrial DNA in rats with obstructive jaundice[J]. J Surg Res, 2015, 196(1): 90-101.
[9]
Abdo EE, Figueira ERR, Rocha-Filho JA, et al. Preliminary results of topical hepatic hypothermia in a model of liver ischemia/reperfusion injury in rats[J]. Arq Gastroenterol, 2017, 54(3): 246-249.
[10]
Parks RJ, Murphy E, Liu JC. Mitochondrial permeability transition pore and calcium handling[J]. Methods Mol Biol, 2018, 1782: 187-196.
[11]
Ferreira AFF, Binda KH, Singulani MP, et al. Physical exercise protects against mitochondria alterations in the 6-hidroxydopamine rat model of Parkinson’s disease[J]. Behav Brain Res, 2020, 387: 112607.
[12]
Jia L, Wang J, Cao H, et al. Activation of PGC-1α and mitochondrial biogenesis protects against prenatal hypoxic-ischemic brain injury[J]. Neuroscience, 2020, 432: 63-72.
[13]
Sharma P, Sampath H. Mitochondrial DNA integrity: role in health and disease[J]. Cells, 2019, 8(2): 100.
[1] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[2] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[3] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[4] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[5] 于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J]. 中华移植杂志(电子版), 2022, 16(05): 314-318.
[6] 郭嘉瑜, 邱涛, 喻博. 泛素-蛋白酶体系统在肝缺血再灌注损伤中的研究进展[J]. 中华移植杂志(电子版), 2022, 16(01): 49-54.
[7] 张文文, 闫琰, 董毅玲, 覃志成. 外源性硫化氢抑制TLR2和TLR4表达并减轻大鼠肾脏缺血再灌注损伤[J]. 中华肾病研究电子杂志, 2022, 11(02): 61-66.
[8] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[9] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[10] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[11] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[12] 蒲友敏, 赵洪雯, 申兵冰, 周强, 谢攀, 吴雄飞. TRPC6靶向miR-214负调控Caspase-1表达以改善肾缺血再灌注损伤的机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(01): 84-93.
[13] 江哲宇, 蒋天鹏, 周石, 王黎洲. 微小RNA在脑缺血再灌注损伤中的研究现状与进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 75-82.
[14] 刘志强, 窦项洁, 刘白露, 董晓萌, 鲍俊宇. 银杏达莫注射液对大鼠肝缺血再灌注损伤的保护作用机制研究[J]. 中华诊断学电子杂志, 2022, 10(04): 259-265.
[15] 李宁, 刘言, 林慧庆. 肺移植供肺缺血再灌注损伤的机制及预防[J]. 中华胸部外科电子杂志, 2023, 10(04): 247-256.
阅读次数
全文


摘要