切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 5 -10. doi: 10.3877/cma.j.issn.1674-0793.2021.01.002

所属专题: 文献

论著

辛伐他汀对胆管癌细胞周期相关蛋白的作用
蔡建鹏1, 张昆松1, 陈伟1, 王曦域1, 陈流华1,()   
  1. 1. 510080 广州,中山大学附属第一医院胆胰外科
  • 收稿日期:2020-06-29 出版日期:2021-02-01
  • 通信作者: 陈流华
  • 基金资助:
    广东省医学科研基金项目(A2017318)

Effect of simvastatin on cell cycle-related proteins in cholangiocarcinoma cells

Jianpeng Cai1, Kunsong Zhang1, Wei Chen1, Xiyu Wang1, Liuhua Chen1,()   

  1. 1. Department of Pancreaticobiliary Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
  • Received:2020-06-29 Published:2021-02-01
  • Corresponding author: Liuhua Chen
引用本文:

蔡建鹏, 张昆松, 陈伟, 王曦域, 陈流华. 辛伐他汀对胆管癌细胞周期相关蛋白的作用[J]. 中华普通外科学文献(电子版), 2021, 15(01): 5-10.

Jianpeng Cai, Kunsong Zhang, Wei Chen, Xiyu Wang, Liuhua Chen. Effect of simvastatin on cell cycle-related proteins in cholangiocarcinoma cells[J]. Chinese Archives of General Surgery(Electronic Edition), 2021, 15(01): 5-10.

目的

了解辛伐他汀对胆管癌细胞周期相关蛋白Cyclin D1、Cyclin E、CDK4及pRB的作用。

方法

体外实验使用辛伐他汀处理胆管癌细胞EGI-1 24 h和48 h后,利用CCK-8试剂盒测定肿瘤细胞增殖情况,其后实时荧光定量PCR(qPCR)检测细胞周期相关基因Cyclin D1、Cyclin E、CDK4及pRB的mRNA,根据结果再用Western blotting验证相应蛋白的表达水平。体内实验使用EGI-1接种于12只NOD-SCID小鼠皮下,成瘤后随机分为实验组和对照组,每组6例。实验组每天按照20 mg/kg的辛伐他汀灌胃,对照组每天喂予同剂量的药物溶剂。24 d后取出移植瘤测量体积并进行免疫组织化学染色,明确上述蛋白的体内表达水平。

结果

辛伐他汀处理对胆管癌细胞EGI-1有增殖抑制作用,呈现药物的浓度依赖性,其24 h及48 h的半抑制浓度数值分别为(8.27±0.77)μmol/L和(5.90±1.81)μmol/L。辛伐他汀处理48 h的EGI-1细胞内Cyclin D1、CDK4和pRB mRNA表达显著下调(P<0.05),而Cyclin E mRNA表达差异无统计学意义。相应地,EGI-1细胞内Cyclin D1、CDK4、pRB蛋白也被抑制,与mRNA的结果保持一致;同时随药物时间延长,抑制作用增强。体内实验显示,辛伐他汀可抑制小鼠移植瘤生长,免疫组织化学分析显示实验组小鼠移植瘤细胞Cyclin D1、CDK4、pRB蛋白下调(P<0.05)。

结论

辛伐他汀可通过下调细胞周期相关蛋白Cyclin D1、CDK4、pRB抑制胆管癌细胞增殖。

Objective

To investigate the effect of simvastatin on cell cycle related proteins Cyclin D1, Cyclin E, CDK4 and pRB in cholangiocarcinoma.

Methods

In vitro, after 24 and 48 h of treatment with simvastatin, the proliferation of cholangiocarcinoma cells EGI-1 was detected by cell counting kit-8 (CCK-8). Then qPCR were employed to determine the expressions of cell cycle-related genes Cyclin D1, Cyclin E, CDK 4 and pRB. And related proteins were further analyzed by Western blotting according to the result of qPCR . In vivo, twelve NOD-SCID mice were inoculated with EGI-1cell, then they were randomly divided into experimental group and control group after tumor formation, with 6 rats in each group. The experimental group took 20 mg/kg simvastatin every day, while the control group took simvastatin solvent every day. Simvastatin were given at a dose of 20 mg/kg once a day for the experimental group, while the solvent were given for the control group. 24 days later, the volume of tumors were measured and immunohistochemical staining was performed to determine the expression level of the above proteins in vivo.

Results

The proliferation of EGI-1 cell was suppressed by simvastatin in a dose-dependent manner. The half maximal inhibitory concentration of 24 and 48 h were (8.27±0.77) μmol/Land (5.90±1.81) μmol/L, respectively. Simvastatin significantly suppressed mRNA expressions of Cyclin D1, CDK4 and pRB after 48 h ( P<0.05). No significant difference was found in mRNA expression of Cyclin E. Correspondingly, proteins of Cyclin D1, CDK4 and pRB were downregulated, which were consistent with the results of mRNA. And increasing simvastatin treated time could elevated this suppression. Simvastatin treatment yielded a significant growth inhibition in vivo. Immunohistochemical staining illustrated that Cyclin D1, CDK4 and pRB expressions were markedly downregulated by simvastatin in transplanted tumor (P<0.05).

Conclusion

Simvastatin inhibits cholangiocarcinoma cell by down-regulating cyclins such as Cyclin D1, CDK4, pRB.

表1 qPCR反应引物(5’→3’)
图1 辛伐他汀对胆管癌细胞增殖的抑制作用 EGI-1在递增浓度的辛伐他汀作用后的存活率显著下降;SIM 24 h为辛伐他汀处理细胞24 h后;SIM 48 h为辛伐他汀处理细胞48 h后
图2 胆管癌细胞EGI-1经辛伐他汀处理后mRNA的相对表达量 SIM 24 h为辛伐他汀处理细胞24 h后;SIM 48 h为辛伐他汀处理细胞48 h后;*与对照组比较,差异有统计学意义(P<0.05)
图3 胆管癌细胞EGI-1经辛伐他汀处理后细胞周期相关蛋白的表达水平 SIM 24 h为辛伐他汀处理细胞24 h后;SIM 48 h为辛伐他汀处理细胞48 h后
图4 辛伐他汀对小鼠移植瘤体积的抑制  *在实验第24天实验组的肿瘤体积与对照组比较,差异有统计学意义(P<0.05)
图5 辛伐他汀对小鼠体内移植瘤细胞周期相关蛋白的抑制(Envision ×200) EGI-1移植瘤中Cyclin D1、CDK4、pRB蛋白在实验组的表达均低于对照组
图6 辛伐他汀对小鼠体内移植瘤细胞周期相关蛋白的免疫组织化学评分*和对照组比较,差异有统计学意义(P<0.05)
[1]
Spolverato G, Vitale A, Cucchetti A, et al. Can hepatic resection provide a long-term cure for patients with intrahepatic cholangiocarcinoma?[J]. Cancer, 2015, 121(22): 3998-4006.
[2]
Yang H, Zhou J, Wei X, et al. Survival outcomes and progonostic factors of extrahepatic cholangiocarcinoma patients following surgical resection: adjuvant therapy is a favorable prognostic factor[J]. Mol Clin Oncol, 2014, 2(6): 1069-1075.
[3]
Mao ZY, Guo XC, Su D, et al. Prognostic factors of cholangio-carcinoma after surgical resection: A retrospective study of 293 patients[J]. Med Sci Monit, 2015, 21: 2375-2381.
[4]
Cheng CT, Chu YY, Yeh CN, et al. Peritumoral SPARC expression and patient outcome with resectable intrahepatic cholangiocarcinoma[J]. Onco Targets Ther, 2015, 8: 1899-1907.
[5]
Howell M, Valle JW. The role of adjuvant chemotherapy and radiotherapy for cholangiocarcinoma[J]. Best Pract Res Clin Gastroenterol, 2015, 29(2): 333-343.
[6]
Cai JP, Chen W, Hou X, et al. Simvastatin enhances the chemotherapeutic efficacy of S-1 against bile duct cancer: E2F-1/TS downregulation might be the mechanism[J]. Anticancer Drugs, 2013, 24(10): 1020-1029.
[7]
Chen C, Stock JL, Liu X, et al. Utility of a novel Oatp1b2 knockout mouse model for evaluating the role of Oatp1b2 in the hepatic uptake of model compounds[J]. Drug Metab Dispos, 2008, 36(9): 1840-1845.
[8]
Wang ST, Ho HJ, Lin JT, et al. Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells[J]. Cell Death Dis, 2017, 8(2): e2626.
[9]
Wang F, Liu W, Ning J, et al. Simvastatin suppresses proliferation and migration in non-small cell lung cancer via pyroptosis[J]. Int J Biol Sci, 2018, 14(4): 406-417.
[10]
Ibrahim AB, Zaki HF, Ibrahim WW, et al. Evaluation of tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer cells[J]. Toxicol Rep, 2019, 6: 1114-1126.
[11]
Liu Q, Xia H, Zhou S, et al. Simvastatin inhibits the malignant behaviors of gastric cancer cells by simultaneously suppressing YAP and β-catenin signaling[J]. Onco Targets Ther, 2020, 13: 2057-2066.
[12]
Lu L, Huang W, Hu W, et al. Kruppel-like factor 2 mediated anti-proliferative and anti-metastasis effects of simvastatin in p53 mutant colon cancer[J]. Biochem Biophys Res Commun, 2019, 511(4): 772-779.
[13]
Wang G, Cao R, Wang Y, et al. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway[J]. Sci Rep, 2016, 6: 35783.
[14]
Lee SJ, Lee I, Lee J, et al. Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, potentiate the anti-angiogenic effects of bevacizumab by suppressing angiopoietin2, BiP, and Hsp90α in human colorectal cancer[J]. Br J Cancer, 2014, 111(3): 497-505.
[15]
Islam M, Sharma S, Kumar B, et al. Atorvastatin inhibits RhoC function and limits head and neck cancer metastasis[J]. Oral Oncol, 2013, 49(8): 778-786.
[16]
Zhang J, Yang Z, Xie L, et al. Statins, autophagy and cancer metastasis[J]. Int J Biochem Cell Biol, 2013, 45(3): 745-752.
[17]
Luput L, Sesarman A, Porfire A, et al. Liposomal simvastatin sensitizes C26 murine colon carcinoma to the antitumor effects of liposomal 5-fluorouracil in vivo[J]. Cancer Sci, 2020, 111(4): 1344-1356.
[18]
Taylor-Harding B, Orsulic S, Karlan BY, et al. Fluvastatin and cisplatin demonstrate synergistic cytotoxicity in epithelial ovarian cancer cells[J]. Gynecol Oncol, 2010, 119(3): 549-556.
[19]
Jamil A, Aamir Mirza M, Anwer MK, et al. Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: in-vitro characterization, cellular uptake, and pharmacokinetic studies[J]. Drug Dev Ind Pharm, 2019, 45(5): 745-753.
[20]
Hasegawa S, Mukai M, Sato S, et al. Long-term survival and tumor 5-FU sensitivity in patients with stage IV colorectal cancer and peritoneal dissemination[J]. Oncol Rep, 2006, 15(5): 1185-1190.
[21]
Edler D, Hallström M, Ragnhammar P, et al. Thymidylate synthase expression in rectal cancer and proliferation, assessed by cyclin A and Ki-67 expression[J]. Anticancer Res, 2002, 22(5): 3113-3116.
[22]
Henslee AB, Steele TA. Combination statin and chemotherapy inhibits proliferation and cytotoxicity of an aggressive natural killer cell leukemia[J]. Biomark Res, 2018, 6: 26.
[1] 范伟强, 林师佈, 孙传伟, 宋奇锋, 李望, 符誉, 陈艾. 不同切除范围的Bismuth-Corlette Ⅲ、Ⅳ型腹腔镜肝门部胆管癌手术临床对比分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 423-426.
[2] 宋铭杰, 韩青雷, 李佳隆, 邵英梅. 内镜下晚期肝外胆管恶性肿瘤消融治疗研究现况[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 340-342.
[3] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[4] 李斌奎. 不可切除肝内胆管细胞癌的转化治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 511-516.
[5] 田驹, 孙伯洋, 杨荣华, 赵向前. 术中意外发现肝外胆管绒毛管状腺瘤的外科处理经验:附两例报道并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 567-571.
[6] 陈雪岩, 孟兴凯. 肝门空肠吻合术在肝门部胆管癌根治术中的应用价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 440-443.
[7] 吴周宇, 周宝勇, 李明. 基于PSM分析腹腔镜肝门部胆管癌根治术安全性[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 384-388.
[8] 杨传鑫, 王伟, 王坚. 残余左肝管内乳头状黏液瘤一例报告[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 236-238.
[9] 李卓群, 任冯刚, 王荣峰, 张东, 耿智敏, 吕毅, 仵正. 胆管癌局部治疗技术应用进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 153-156.
[10] 王健东, 全志伟. 重视胆道恶性肿瘤化疗联合靶向免疫的综合治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 125-130.
[11] 单季军, 李相成. 肝门部胆管癌术前减黄及其对手术安全性的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 157-161.
[12] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[13] 李杰, 任加强, 马坚, 王铮, 马清涌, 仵正. 血栓弹力图测定对远端胆管癌胰十二指肠切除术后出血的预测价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 211-215.
[14] 俞阳, 陶鹏先, 王博方, 汪学艳, 张爱群, 陈昊. 胆管癌手术治疗策略[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 551-554.
[15] 房炯泽, 杨勇, 叶莹鹏, 朱宏达, 吴胜东, 陆才德. 肝门部胆管癌术后患者预后影响因素:单中心160例分析[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 619-624.
阅读次数
全文


摘要