[1] |
吴超杰,乔高昂,笪东祝, 等. 甲状腺术中甲状旁腺识别技术的转化研究进展[J/CD]. 中华普通外科学文献(电子版), 2020, 14(1): 68-71.
|
[2] |
郑福庆,张立永,王波, 等. 甲状腺乳头状癌颈侧区淋巴结转移的危险因素研究进展[J/CD]. 中华普通外科学文献(电子版), 2020, 14(5): 384-387.
|
[3] |
王勇,王玲. 甲状腺癌术后碘131联合甲状腺激素应用效果分析[J/CD]. 中华普外科手术学杂志(电子版), 2020, 14(6): 616-619.
|
[4] |
王涛,柳桢,左道宏, 等. 肿瘤异常蛋白在甲状腺乳头状癌中的表达及影响因素分析[J]. 中华内分泌外科杂志, 2020, 14(2): 133-138.
|
[5] |
宋创业,严丽,孟艳林, 等. 甲状腺癌发生发展及预后的相关影响因素[J/CD]. 中华普通外科学文献(电子版), 2020, 14(1): 72-75.
|
[6] |
中华人民共和国国家卫生健康委员会. 甲状腺癌诊疗规范(2018年版)[J/CD]. 中华普通外科学文献(电子版), 2019, 13(1): 1-15.
|
[7] |
王首星,尚培中. 结直肠癌Lewis-Selectin转移途径与西咪替丁抗癌治疗研究进展[J]. 中国普外基础与临床杂志, 2010, 17(7): 760-764.
|
[8] |
Starzonek S, Maar H, Labitzky V, et al. Systematic analysis of the human tumor cell binding to human vs. murine E- and P-selectin under static vs. dynamic conditions[J]. Glycobiology, 2020, 30(9): 695-709.
|
[9] |
Cohen EN, Fouad TM, Lee BN, et al. Elevated serum levels of sialyl Lewis X (sLex) and inflammatory mediators in patients with breast cancer[J]. Breast Cancer Res Treat, 2019, 176(3): 545-556.
|
[10] |
Ferreira IG, Carrascal M, Mineiro AG, et al. Carcinoembryonic antigen is a sialyl Lewis x/a carrier and an Eselectin ligand in nonsmall cell lung cancer[J]. Int J Oncol, 2019, 55(5): 1033-1048.
|
[11] |
Doi N, Ino Y, Angata K, et al. Clinicopathological significance of core 3 O-glycan synthetic enzyme, β1, 3-N-acetylglucosaminyltransferase 6 in pancreatic ductal adenocarcinoma[J]. PloS One, 2020, 15(11): e0242851.
|
[12] |
Mai KT, Ford JC, Yazdi HM, et al. Immunohistochemical study of papillary thyroid carcinoma and possible papillary thyroid carcinoma-related benign thyroid nodules[J]. Pathol Res Pract, 2000, 196(8): 533-540.
|
[13] |
谷化平,李德炳,张正猛, 等. P53和Sialyl Lewis-X表达与甲状腺乳头状癌侵袭转移的关系[J]. 西安交通大学学报(医学版), 2005, 26(1): 71-73.
|
[14] |
Low S, Sakai Y, Hoshino H, et al. High endothelial venule-like vessels and lymphocyte recruitment in diffuse sclerosing variant of papillary thyroid carcinoma[J]. Pathology, 2016, 48(7): 666-674.
|
[15] |
郭宏义,宁亚文,李文龙, 等. 细胞角蛋白19、半乳糖凝集素3、HBME-1和BRAF V600E表达在甲状腺结节的临床应用价值[J/CD]. 中华普通外科学文献(电子版), 2020, 14(5): 331-335.
|
[16] |
Yu W, Ma B, Zhao W, et al. The combination of circRNA-UMAD1 and Galectin-3 in peripheral circulation is a co-biomarker for predicting lymph node metastasis of thyroid carcinoma[J]. Am J Transl Res, 2020, 12(9): 5399-5415.
|
[17] |
Cho H, Kim JY, Oh YL. Diagnostic value of HBME-1, CK19, Galectin 3, and CD56 in the subtypes of follicular variant of papillary thyroid carcinoma[J]. Pathol Int, 2018, 68(11): 605-613.
|
[18] |
De Rose F, Braeuer M, Braesch-Andersen S, et al. Galectin-3 targeting in thyroid orthotopic tumors opens new ways to characterize thyroid cancer[J]. J Nucl Med, 2019, 60(6): 770-776.
|
[19] |
Song S, Kim H, Ahn SH, et al. Role of immunohistochemistry in fine needle aspiration and core needle biopsy of thyroid nodules[J]. Clin Exp Otorhinolar, 2019, 12(2): 224-230.
|
[20] |
南润玲,尚培中,王金, 等. 甲状腺乳头状癌术中纳米炭示踪对淋巴结清扫及甲状旁腺保护的临床意义[J/CD]. 中华普通外科学文献(电子版), 2018, 12(1): 36-39.
|
[21] |
Yu W, Ma B, Zhao W, et al. The combination of circRNA-UMAD1 and Galectin-3 in peripheral circulation is a co-biomarker for predicting lymph node metastasis of thyroid carcinoma[J]. Am J Transl Res, 2020, 12(9): 5399-5415.
|