切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 231 -235. doi: 10.3877/cma.j.issn.1674-0793.2022.03.016

综述

铁死亡在常见肝脏疾病中的研究进展
刘思嘉1, 张喜玲2, 黄翠君3, 刘云建4,()   
  1. 1. 332001 九江学院附属医院麻醉科
    2. 274000 菏泽市立医院输液中心
    3. 332005 九江市第一人民医院体检中心
    4. 332001 九江学院附属医院肝胆外科
  • 收稿日期:2022-04-17 出版日期:2022-06-01
  • 通信作者: 刘云建
  • 基金资助:
    江西省自然科学基金面上项目(20202BABL206092); 江西省教育厅科学技术研究项目(GJJ161064)

Ferroptosis in common liver diseases: development of research

Sijia Liu1, Xiling Zhang2, Cuijun Huang3, Yunjian Liu4,()   

  1. 1. Department of Anesthesiology, Jiujiang University Affiliated Hospital, Jiujiang 332001, China
    2. Infusion Center, Heze Municipal Hospital, Heze 274000, China
    3. Medical Examination Center, Jiujiang No.1 People’s Hospital, Jiujiang 332005, China
    4. Department of Hepatobiliary Surgery, Jiujiang University Affiliated Hospital, Jiujiang 332001, China
  • Received:2022-04-17 Published:2022-06-01
  • Corresponding author: Yunjian Liu
引用本文:

刘思嘉, 张喜玲, 黄翠君, 刘云建. 铁死亡在常见肝脏疾病中的研究进展[J]. 中华普通外科学文献(电子版), 2022, 16(03): 231-235.

Sijia Liu, Xiling Zhang, Cuijun Huang, Yunjian Liu. Ferroptosis in common liver diseases: development of research[J]. Chinese Archives of General Surgery(Electronic Edition), 2022, 16(03): 231-235.

铁死亡是一种铁依赖性的细胞死亡形式,其特征是细胞内脂质过氧化物积累和氧化还原失衡。与其他细胞死亡模式相比,铁死亡表现出特定的生物学和形态学特征。谷胱甘肽过氧化物酶4(GPX4)的脂质过氧化物修复活性丧失、氧化还原活性铁的存在以及含有多不饱和脂肪酸(PUFA)的磷脂氧化被认为是铁死亡的明显特征。本综述报道了常见急性或慢性肝脏疾病谱中的铁死亡,并讨论铁死亡治疗原发性肝癌最常见病理类型肝细胞癌的方法。

Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. In this review, we report the contribution of ferroptisis to the spectrum of acute or chronic liver diseases. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common pathological type of primary liver cancer.

[1]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[2]
Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death[J]. Cell Res, 2019, 29(5): 347-364.
[3]
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
[4]
Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296.
[5]
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379.
[6]
Shojaie L, Iorga A, Dara L. Cell death in liver diseases: A review[J]. Int J Mol Sci, 2020, 21(24): 9682.
[7]
Pan Y, Tang P, Cao J, et al. Lipid peroxidation aggravates anti-tuberculosis drug-induced liver injury: evidence of ferroptosis induction[J]. Biochem Biophys Res Commun, 2020, 533(4): 1512-1518.
[8]
Church RJ, Watkins PB. The transformation in biomarker detection and management of drug-induced liver injury[J]. Liver Int, 2017, 37(11): 1582-1590.
[9]
Galmiche A. Ferroptosis in Liver Disease//Tang D. Ferroptosis in health and disease[M]. Springer: Cham, 2019: 239-248.
[10]
Yamada N, Karasawa T, Kimura H, et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure[J]. Cell Death Dis, 2020, 11(2): 144.
[11]
Yan B, Ai Y, Sun Q, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81(2): 355-369. e10.
[12]
Yang W, Wang Y, Zhang C, et al. Maresin1 protect against ferroptosis-induced liver injury through ROS inhibition and Nrf2/HO-1/GPX4 activation[J]. Front Pharmacol, 2022, 13: 865689.
[13]
Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: A 2015 update[J]. Clin Sci (Lond), 2015, 129(4): 345-362.
[14]
Angeli JPF, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
[15]
Jiang M, Wu N, Chen X, et al. Pathogenesis of and major animal models used for nonalcoholic fatty liver disease[J]. J Int Med Res, 2019, 47(4): 1453-1466.
[16]
Afonso MB, Castro RE, Rodrigues C. Processes exacerbating apoptosis in non-alcoholic steatohepatitis[J]. Clin Sci (Lond), 2019, 133(22): 2245-2264.
[17]
Loguercio C, De Girolamo V, Sio I, et al. Non-alcoholic fatty liver disease in an area of southern Italy: main clinical, histological, and pathophysiological aspects[J]. J Hepatol, 2001, 35(5): 568-574.
[18]
Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis[J]. N Engl J Med, 2010, 362(18): 1675-1685.
[19]
Maliken BD, Nelson JE, Klintworth HM, et al. Hepatic reticuloendothelial system cell iron deposition is associated with increased apoptosis in nonalcoholic fatty liver disease[J]. Hepatology, 2013, 57(5): 1806-1813.
[20]
Chitturi S, Weltman M, Farrell GC, et al. HFE mutations, hepatic iron, and fibrosis: ethnic-specific association of NASH with C282Y but not with fibrotic severity[J]. Hepatology, 2002, 36(1): 142-149.
[21]
Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6): 449.
[22]
You M, Jogasuria A, Lee K, et al. Signal transduction mechanisms of alcoholic fatty liver disease: emer ging role of lipin-1[J]. Curr Mol Pharmacol, 2017, 10(3): 226-236.
[23]
Li LX, Guo FF, Liu H, et al. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets[J]. Cell Mol Life Sci, 2022 , 79(4): 201.
[24]
Yang L, Wang H, Yang X, et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms[J]. Signal Transduct Target Ther, 2020, 5(1): 138.
[25]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, PMID: 30207593.
[26]
Louandre C, Marcq I, Bouhlal H, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells[J]. Cancer Lett, 2015, 356(2 Pt B): 971-977.
[27]
Li Y, Xia J, Shao F, et al. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis[J]. Biochem Biophys Res Commun, 2021, 534: 877-884.
[28]
Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy[J]. Adv Mater, 2019, 31(51): e1904197.
[29]
You A, Cao M, Guo Z, et al. Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models[J]. J Hematol Oncol, 2016, 9: 20.
[30]
Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1): 173-184.
[31]
Nie J, Lin B, Zhou M, et al. Role of ferroptosis in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2018, 144(12): 2329-2337.
[32]
Yang J, Gong Y, Sontag DP, et al. Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines[J]. Mol Biol Rep, 2018, 45(5): 1023-1036.
[33]
Bai T, Wang S, Zhao Y, et al. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2017, 491(4): 919-925.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[5] 彭进, 岳扬, 余德才. 基于Laennec膜指引多次肝脏手术后肝周粘连分离[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 243-245.
[6] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[7] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[8] 李双喜, 胡宗凯, 赵静, 黄洁. 肝血管瘤治疗指征及治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 504-510.
[9] 郭佳胤, 徐杰, 刘作金. 腹腔镜下ALPPS右半肝切除一例(附视频)[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 345-347.
[10] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[11] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[12] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[13] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 林加文, 印于, 杨俊, 朱晓黎, 王万胜. 肝动门静脉瘘合并腹水一例[J]. 中华介入放射学电子杂志, 2023, 11(03): 289-291.
阅读次数
全文


摘要