切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 231 -235. doi: 10.3877/cma.j.issn.1674-0793.2022.03.016

综述

铁死亡在常见肝脏疾病中的研究进展
刘思嘉1, 张喜玲2, 黄翠君3, 刘云建4,()   
  1. 1. 332001 九江学院附属医院麻醉科
    2. 274000 菏泽市立医院输液中心
    3. 332005 九江市第一人民医院体检中心
    4. 332001 九江学院附属医院肝胆外科
  • 收稿日期:2022-04-17 出版日期:2022-06-01
  • 通信作者: 刘云建
  • 基金资助:
    江西省自然科学基金面上项目(20202BABL206092); 江西省教育厅科学技术研究项目(GJJ161064)

Ferroptosis in common liver diseases: development of research

Sijia Liu1, Xiling Zhang2, Cuijun Huang3, Yunjian Liu4,()   

  1. 1. Department of Anesthesiology, Jiujiang University Affiliated Hospital, Jiujiang 332001, China
    2. Infusion Center, Heze Municipal Hospital, Heze 274000, China
    3. Medical Examination Center, Jiujiang No.1 People’s Hospital, Jiujiang 332005, China
    4. Department of Hepatobiliary Surgery, Jiujiang University Affiliated Hospital, Jiujiang 332001, China
  • Received:2022-04-17 Published:2022-06-01
  • Corresponding author: Yunjian Liu
引用本文:

刘思嘉, 张喜玲, 黄翠君, 刘云建. 铁死亡在常见肝脏疾病中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2022, 16(03): 231-235.

Sijia Liu, Xiling Zhang, Cuijun Huang, Yunjian Liu. Ferroptosis in common liver diseases: development of research[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2022, 16(03): 231-235.

铁死亡是一种铁依赖性的细胞死亡形式,其特征是细胞内脂质过氧化物积累和氧化还原失衡。与其他细胞死亡模式相比,铁死亡表现出特定的生物学和形态学特征。谷胱甘肽过氧化物酶4(GPX4)的脂质过氧化物修复活性丧失、氧化还原活性铁的存在以及含有多不饱和脂肪酸(PUFA)的磷脂氧化被认为是铁死亡的明显特征。本综述报道了常见急性或慢性肝脏疾病谱中的铁死亡,并讨论铁死亡治疗原发性肝癌最常见病理类型肝细胞癌的方法。

Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. In this review, we report the contribution of ferroptisis to the spectrum of acute or chronic liver diseases. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common pathological type of primary liver cancer.

[1]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[2]
Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death[J]. Cell Res, 2019, 29(5): 347-364.
[3]
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
[4]
Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296.
[5]
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379.
[6]
Shojaie L, Iorga A, Dara L. Cell death in liver diseases: A review[J]. Int J Mol Sci, 2020, 21(24): 9682.
[7]
Pan Y, Tang P, Cao J, et al. Lipid peroxidation aggravates anti-tuberculosis drug-induced liver injury: evidence of ferroptosis induction[J]. Biochem Biophys Res Commun, 2020, 533(4): 1512-1518.
[8]
Church RJ, Watkins PB. The transformation in biomarker detection and management of drug-induced liver injury[J]. Liver Int, 2017, 37(11): 1582-1590.
[9]
Galmiche A. Ferroptosis in Liver Disease//Tang D. Ferroptosis in health and disease[M]. Springer: Cham, 2019: 239-248.
[10]
Yamada N, Karasawa T, Kimura H, et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure[J]. Cell Death Dis, 2020, 11(2): 144.
[11]
Yan B, Ai Y, Sun Q, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81(2): 355-369. e10.
[12]
Yang W, Wang Y, Zhang C, et al. Maresin1 protect against ferroptosis-induced liver injury through ROS inhibition and Nrf2/HO-1/GPX4 activation[J]. Front Pharmacol, 2022, 13: 865689.
[13]
Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: A 2015 update[J]. Clin Sci (Lond), 2015, 129(4): 345-362.
[14]
Angeli JPF, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
[15]
Jiang M, Wu N, Chen X, et al. Pathogenesis of and major animal models used for nonalcoholic fatty liver disease[J]. J Int Med Res, 2019, 47(4): 1453-1466.
[16]
Afonso MB, Castro RE, Rodrigues C. Processes exacerbating apoptosis in non-alcoholic steatohepatitis[J]. Clin Sci (Lond), 2019, 133(22): 2245-2264.
[17]
Loguercio C, De Girolamo V, Sio I, et al. Non-alcoholic fatty liver disease in an area of southern Italy: main clinical, histological, and pathophysiological aspects[J]. J Hepatol, 2001, 35(5): 568-574.
[18]
Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis[J]. N Engl J Med, 2010, 362(18): 1675-1685.
[19]
Maliken BD, Nelson JE, Klintworth HM, et al. Hepatic reticuloendothelial system cell iron deposition is associated with increased apoptosis in nonalcoholic fatty liver disease[J]. Hepatology, 2013, 57(5): 1806-1813.
[20]
Chitturi S, Weltman M, Farrell GC, et al. HFE mutations, hepatic iron, and fibrosis: ethnic-specific association of NASH with C282Y but not with fibrotic severity[J]. Hepatology, 2002, 36(1): 142-149.
[21]
Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6): 449.
[22]
You M, Jogasuria A, Lee K, et al. Signal transduction mechanisms of alcoholic fatty liver disease: emer ging role of lipin-1[J]. Curr Mol Pharmacol, 2017, 10(3): 226-236.
[23]
Li LX, Guo FF, Liu H, et al. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets[J]. Cell Mol Life Sci, 2022 , 79(4): 201.
[24]
Yang L, Wang H, Yang X, et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms[J]. Signal Transduct Target Ther, 2020, 5(1): 138.
[25]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, PMID: 30207593.
[26]
Louandre C, Marcq I, Bouhlal H, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells[J]. Cancer Lett, 2015, 356(2 Pt B): 971-977.
[27]
Li Y, Xia J, Shao F, et al. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis[J]. Biochem Biophys Res Commun, 2021, 534: 877-884.
[28]
Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy[J]. Adv Mater, 2019, 31(51): e1904197.
[29]
You A, Cao M, Guo Z, et al. Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models[J]. J Hematol Oncol, 2016, 9: 20.
[30]
Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1): 173-184.
[31]
Nie J, Lin B, Zhou M, et al. Role of ferroptosis in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2018, 144(12): 2329-2337.
[32]
Yang J, Gong Y, Sontag DP, et al. Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines[J]. Mol Biol Rep, 2018, 45(5): 1023-1036.
[33]
Bai T, Wang S, Zhao Y, et al. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2017, 491(4): 919-925.
[1] 马旦杰, 黄品同, 徐琛, 周芳芳, 潘敏强. 超声造影LI-RADS系统联合甲胎蛋白对有无高危因素背景人群肝细胞癌的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 288-296.
[2] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[3] 陈桂华, 钟小玲, 谢雨, 王慧, 谢江, 杨涛毅. 合并肝脏疾病特殊健康状态儿童疫苗预防接种及时性临床分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 431-439.
[4] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[5] 叶美妮, 刘思嘉, 臧玉玮, 刘云建. 肝硬化门静脉血栓形成的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 379-384.
[6] 刘连新, 张树庚. 腹腔镜左半肝联合左尾状叶切除术[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 368-368.
[7] 王泽钦, 洪军, 王雅平, 王健, 蒿汉坤. W型肝脏悬吊技术在全腹腔镜下全胃切除术中的应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 218-221.
[8] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[9] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[10] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
[11] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[12] 张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.
[13] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
[14] 向林, 江云颂, 程吕佳, 关炳生, 杨景哥. 生长素释放肽在肥胖治疗中的潜在应用价值研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 235-241.
[15] 孙伟, 徐东升. 减重与代谢外科肝脏悬吊方式研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 261-268.
阅读次数
全文


摘要