[1] |
国家卫生健康委办公厅. 胰腺癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(5): 1006-1015.
|
[2] |
Balachandran VP, Beatty GL, Dougan SK. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities[J]. Gastroenterology, 2019, 156(7): 2056-2072.
|
[3] |
Morgillo F, Dallio M, Della Corte CM, et al. Carcinogenesis as a result of multiple inflammatory and oxidative hits: A comprehensive review from tumor microenvironment to gut microbiota[J]. Neoplasia, 2018, 20(7): 721-733.
|
[4] |
Zhou CB, Zhou YL, Fang JY. Gut microbiota in cancer immune response and immunotherapy[J]. Trends Cancer, 2021, 7(7): 647-660.
|
[5] |
袁蒙,阿卜杜海拜尔·萨杜拉,任思谦, 等. 胰腺癌免疫微环境特点与相关免疫治疗策略[J]. 中华医学杂志, 2021, 101(12): 831-835.
|
[6] |
Gaiser RA, Halimi A, Alkharaan H, et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer[J]. Gut, 2019, 68(12): 2186-2194.
|
[7] |
Herremans KM, Riner AN, Cameron ME, et al. The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine[J]. Microbiome, 2022, 10(1): 93.
|
[8] |
Zhang JJ, Wu HS, Wang L, et al. Expression and significance of TLR4 and HIF-1alpha in pancreatic ductal adenocarcinoma[J]. World J Gastroenterol, 2010, 16(23): 2881-2888.
|
[9] |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563, e16.
|
[10] |
Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: A Meta-analysis[J]. Ann Oncol, 2017, 28(5): 985-995.
|
[11] |
Panebianco C, Ciardiello D, Villani A, et al. Insights into the role of gut and intratumor microbiota in pancreatic ductal adenocarcinoma as new key players in preventive, diagnostic and therapeutic perspective[J]. Semin Cancer Biol, 2021, 86(Pt 3): 997-1007.
|
[12] |
Fritz S, Hackert T, Hartwig W, et al. Bacterial translocation and infected pancreatic necrosis in acute necrotizing pancreatitis derives from small bowel rather than from colon[J]. Am J Surg, 2010, 200(1): 111-117.
|
[13] |
Wastyk HC, Fragiadakis GK, Perelman D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184(16): 4137-4153, e14.
|
[14] |
Hirabayashi M, Inoue M, Sawada N, et al. Helicobacter pylori infection, atrophic gastritis, and risk of pancreatic cancer: A population-based cohort study in a large Japanese population: the JPHC Study[J]. Sci Rep, 2019, 9(1): 6099.
|
[15] |
Raderer M, Wrba F, Kornek G, et al. Association between Helicobacter pylori infection and pancreatic cancer[J]. Oncology, 1998, 55(1): 16-19.
|
[16] |
Toh J, Wilson RB. Pathways of gastric carcinogenesis, helicobacter pylori virulence and interactions with antioxidant systems, vitamin C and phytochemicals[J]. Int J Mol Sci, 2020, 21(17): 6451.
|
[17] |
Maekawa T, Fukaya R, Takamatsu S, et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer[J]. Biochem Biophys Res Commun, 2018, 506(4): 962-969.
|
[18] |
Gnanasekaran J, Binder Gallimidi A, Saba E, et al. Intracellular porphyromonas gingivalis promotes the tumorigenic behavior of pancreatic carcinoma cells[J]. Cancers (Basel), 2020, 12(8): 2331.
|
[19] |
Chung LM, Liang JA, Lin CL, et al. Cancer risk in patients with candidiasis: A nationwide population-based cohort study[J]. Oncotarget, 2017, 8(38): 63562-63573.
|
[20] |
Aykut B, Pushalkar S, Chen R, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL[J]. Nature, 2019, 574(7777): 264-267.
|
[21] |
Farrell JJ, Zhang L, Zhou H, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer[J]. Gut, 2012, 61(4): 582-588.
|
[22] |
Michaud DS, Izard J, Wilhelm-Benartzi CS, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study[J]. Gut, 2013, 62(12): 1764-1770.
|
[23] |
Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study[J]. Gut, 2018, 67(1): 120-127.
|
[24] |
Risch HA, Yu H, Lu L, et al. ABO blood group, Helicobacter pylori seropositivity, and risk of pancreatic cancer: A case-control study[J]. J Natl Cancer Inst, 2010, 102(7): 502-505.
|
[25] |
Ren Z, Jiang J, Xie H, et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China[J]. Oncotarget, 2017, 8(56): 95176-95191.
|
[26] |
Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J]. Science, 2017, 357(6356): 1156-1160.
|
[27] |
Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4): 403-416.
|
[28] |
Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy[J]. Cancer Cell, 2018, 33(4): 570-580.
|
[29] |
Sethi V, Vitiello GA, Saxena D, et al. The role of the microbiome in immunologic development and its implication for pancreatic cancer immunotherapy[J]. Gastroenterology, 2019, 156(7): 2097-2115, e2.
|
[30] |
Thomas RM, Gharaibeh RZ, Gauthier J, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models[J]. Carcinogenesis, 2018, 39(8): 1068-1078.
|
[31] |
Sethi V, Kurtom S, Tarique M, et al. Gut microbiota promotes tumor growth in mice by modulating immune response[J]. Gastroenterology, 2018, 155(1): 33-37, e6.
|
[32] |
Seifert L, Werba G, Tiwari S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression[J]. Nature, 2016, 532(7598): 245-249.
|
[33] |
Zambirinis CP, Levie E, Nguy S, et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis[J]. J Exp Med, 2015, 212(12): 2077-2094.
|
[34] |
Dickson I. Microbiome promotes pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 328.
|
[35] |
Wei MY, Shi S, Liang C, et al. The microbiota and microbiome in pancreatic cancer: more influential than expected[J]. Mol Cancer, 2019, 18(1): 97.
|
[36] |
Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment[J]. Biomaterials, 2021, 268: 120546.
|
[37] |
Meric-Bernstam F, Larkin J, Tabernero J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations[J]. Lancet, 2021, 397(10278): 1010-1022.
|
[38] |
Matson V, Chervin CS, Gajewski TF. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy[J]. Gastroenterology, 2021, 160(2): 600-613.
|
[39] |
Inthagard J, Edwards J, Roseweir AK. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers[J]. Clin Sci (Lond), 2019, 133(2): 181-193.
|
[40] |
Zheng Y, Wang T, Tu X, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma[J]. J Immunother Cancer, 2019, 7(1): 193.
|
[41] |
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
|
[42] |
Rizvi ZA, Dalal R, Sadhu S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity[J]. Sci Adv, 2021, 7(37): eabg5016.
|
[43] |
O’Reilly EM, Oh DY, Dhani N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5(10): 1431-1438.
|
[44] |
Ritter B, Greten FR. Modulating inflammation for cancer therapy[J]. J Exp Med, 2019, 216(6): 1234-1243.
|
[45] |
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20212-20217.
|
[46] |
Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy[J]. Nat Med, 2016, 22(8): 851-860.
|
[47] |
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1): 1-10.
|
[48] |
Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178(4): 795-806, e12.
|
[49] |
Vitiello GA, Cohen DJ, Miller G. Harnessing the microbiome for pancreatic cancer immunotherapy[J]. Trends Cancer, 2019, 5(11): 670-676.
|
[50] |
Dong J, Gao HL, Wang WQ, et al. Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188484.
|
[51] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
|
[52] |
Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391): eaan5931.
|
[53] |
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448.
|
[54] |
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
|
[55] |
Riquelme E, Maitra A, McAllister F. Immunotherapy for pancreatic cancer: more than just a gut feeling[J]. Cancer Discov, 2018, 8(4): 386-388.
|
[56] |
Wei X, Mei C, Li X, et al. The unique microbiome and immunity in pancreatic cancer[J]. Pancreas, 2021, 50(2): 119-129.
|
[57] |
Sutcliffe S, Giovannucci E, Isaacs WB, et al. Acne and risk of prostate cancer[J]. Int J Cancer, 2007, 121(12): 2688-2692.
|