切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 397 -401. doi: 10.3877/cma.j.issn.1674-0793.2022.06.003

述评

微生物群对胰腺癌免疫治疗影响的研究现状
孙诚谊1,(), 华豪1   
  1. 1. 550004 贵阳,贵州医科大学附属医院肝胆外科
  • 收稿日期:2022-09-29 出版日期:2022-12-01
  • 通信作者: 孙诚谊
  • 基金资助:
    贵州省高层次创新型人才("+"层次人才)培养计划(黔科合平台人才(2016)5647)

Current status of gut microbiota in immune treatment of pancreatic cancer

Chengyi Sun1(), Hao Hua1   

  • Received:2022-09-29 Published:2022-12-01
  • Corresponding author: Chengyi Sun
引用本文:

孙诚谊, 华豪. 微生物群对胰腺癌免疫治疗影响的研究现状[J]. 中华普通外科学文献(电子版), 2022, 16(06): 397-401.

Chengyi Sun, Hao Hua. Current status of gut microbiota in immune treatment of pancreatic cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2022, 16(06): 397-401.

即使是早期的胰腺癌,通常被认为可以通过手术切除治疗的患者5年生存率也只有25%[1]。免疫治疗已逐渐成为治疗胰腺癌的新策略[2]。肿瘤微环境是一个包含巨噬细胞、肥大细胞、嗜中性粒细胞、骨髓来源抑制性细胞(myeloid-derived suppressor cells,MDSCs)、树突状细胞、自然杀伤细胞、适应性免疫细胞以及间质等成分的复杂微小空间,消化道微生物群也是胰腺肿瘤微环境的重要组成部分[3]。微生物群可以通过提供营养、参与维生素的合成和血管的生成、抑制病原体生长、维持激素平衡和调节炎性反应来帮助维持体内平衡[4]。在失衡的情况下,微生物群可以导致各种疾病甚至恶性肿瘤,还可以影响化疗、靶向免疫疗法的疗效以及术后并发症的发生,这些都与致癌信号通路的激活和细胞DNA的破坏有关[5]。研究证实,微生物群与胰腺癌较高的肿瘤侵袭力、远处转移及对化疗药物不敏感等特征显著相关。最近,大多数基于临床样本或病例报告探讨了微生物群与胰腺癌免疫微环境之间的相关性,但其具体机制尚不清楚,特别是涉及的免疫途径和有益菌群的作用往往被忽视。进一步了解微生物群在胰腺癌免疫治疗中的作用,可以为胰腺癌提供更有效的治疗策略。

表1 微生物与胰腺癌的相关性研究
[1]
国家卫生健康委办公厅. 胰腺癌诊疗指南(2022年版)[J]. 临床肝胆病杂志, 2022, 38(5): 1006-1015.
[2]
Balachandran VP, Beatty GL, Dougan SK. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities[J]. Gastroenterology, 2019, 156(7): 2056-2072.
[3]
Morgillo F, Dallio M, Della Corte CM, et al. Carcinogenesis as a result of multiple inflammatory and oxidative hits: A comprehensive review from tumor microenvironment to gut microbiota[J]. Neoplasia, 2018, 20(7): 721-733.
[4]
Zhou CB, Zhou YL, Fang JY. Gut microbiota in cancer immune response and immunotherapy[J]. Trends Cancer, 2021, 7(7): 647-660.
[5]
袁蒙,阿卜杜海拜尔·萨杜拉,任思谦, 等. 胰腺癌免疫微环境特点与相关免疫治疗策略[J]. 中华医学杂志, 2021, 101(12): 831-835.
[6]
Gaiser RA, Halimi A, Alkharaan H, et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer[J]. Gut, 2019, 68(12): 2186-2194.
[7]
Herremans KM, Riner AN, Cameron ME, et al. The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine[J]. Microbiome, 2022, 10(1): 93.
[8]
Zhang JJ, Wu HS, Wang L, et al. Expression and significance of TLR4 and HIF-1alpha in pancreatic ductal adenocarcinoma[J]. World J Gastroenterol, 2010, 16(23): 2881-2888.
[9]
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563, e16.
[10]
Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: A Meta-analysis[J]. Ann Oncol, 2017, 28(5): 985-995.
[11]
Panebianco C, Ciardiello D, Villani A, et al. Insights into the role of gut and intratumor microbiota in pancreatic ductal adenocarcinoma as new key players in preventive, diagnostic and therapeutic perspective[J]. Semin Cancer Biol, 2021, 86(Pt 3): 997-1007.
[12]
Fritz S, Hackert T, Hartwig W, et al. Bacterial translocation and infected pancreatic necrosis in acute necrotizing pancreatitis derives from small bowel rather than from colon[J]. Am J Surg, 2010, 200(1): 111-117.
[13]
Wastyk HC, Fragiadakis GK, Perelman D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184(16): 4137-4153, e14.
[14]
Hirabayashi M, Inoue M, Sawada N, et al. Helicobacter pylori infection, atrophic gastritis, and risk of pancreatic cancer: A population-based cohort study in a large Japanese population: the JPHC Study[J]. Sci Rep, 2019, 9(1): 6099.
[15]
Raderer M, Wrba F, Kornek G, et al. Association between Helicobacter pylori infection and pancreatic cancer[J]. Oncology, 1998, 55(1): 16-19.
[16]
Toh J, Wilson RB. Pathways of gastric carcinogenesis, helicobacter pylori virulence and interactions with antioxidant systems, vitamin C and phytochemicals[J]. Int J Mol Sci, 2020, 21(17): 6451.
[17]
Maekawa T, Fukaya R, Takamatsu S, et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer[J]. Biochem Biophys Res Commun, 2018, 506(4): 962-969.
[18]
Gnanasekaran J, Binder Gallimidi A, Saba E, et al. Intracellular porphyromonas gingivalis promotes the tumorigenic behavior of pancreatic carcinoma cells[J]. Cancers (Basel), 2020, 12(8): 2331.
[19]
Chung LM, Liang JA, Lin CL, et al. Cancer risk in patients with candidiasis: A nationwide population-based cohort study[J]. Oncotarget, 2017, 8(38): 63562-63573.
[20]
Aykut B, Pushalkar S, Chen R, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL[J]. Nature, 2019, 574(7777): 264-267.
[21]
Farrell JJ, Zhang L, Zhou H, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer[J]. Gut, 2012, 61(4): 582-588.
[22]
Michaud DS, Izard J, Wilhelm-Benartzi CS, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study[J]. Gut, 2013, 62(12): 1764-1770.
[23]
Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study[J]. Gut, 2018, 67(1): 120-127.
[24]
Risch HA, Yu H, Lu L, et al. ABO blood group, Helicobacter pylori seropositivity, and risk of pancreatic cancer: A case-control study[J]. J Natl Cancer Inst, 2010, 102(7): 502-505.
[25]
Ren Z, Jiang J, Xie H, et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China[J]. Oncotarget, 2017, 8(56): 95176-95191.
[26]
Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine[J]. Science, 2017, 357(6356): 1156-1160.
[27]
Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression[J]. Cancer Discov, 2018, 8(4): 403-416.
[28]
Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy[J]. Cancer Cell, 2018, 33(4): 570-580.
[29]
Sethi V, Vitiello GA, Saxena D, et al. The role of the microbiome in immunologic development and its implication for pancreatic cancer immunotherapy[J]. Gastroenterology, 2019, 156(7): 2097-2115, e2.
[30]
Thomas RM, Gharaibeh RZ, Gauthier J, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models[J]. Carcinogenesis, 2018, 39(8): 1068-1078.
[31]
Sethi V, Kurtom S, Tarique M, et al. Gut microbiota promotes tumor growth in mice by modulating immune response[J]. Gastroenterology, 2018, 155(1): 33-37, e6.
[32]
Seifert L, Werba G, Tiwari S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression[J]. Nature, 2016, 532(7598): 245-249.
[33]
Zambirinis CP, Levie E, Nguy S, et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis[J]. J Exp Med, 2015, 212(12): 2077-2094.
[34]
Dickson I. Microbiome promotes pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 328.
[35]
Wei MY, Shi S, Liang C, et al. The microbiota and microbiome in pancreatic cancer: more influential than expected[J]. Mol Cancer, 2019, 18(1): 97.
[36]
Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment[J]. Biomaterials, 2021, 268: 120546.
[37]
Meric-Bernstam F, Larkin J, Tabernero J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations[J]. Lancet, 2021, 397(10278): 1010-1022.
[38]
Matson V, Chervin CS, Gajewski TF. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy[J]. Gastroenterology, 2021, 160(2): 600-613.
[39]
Inthagard J, Edwards J, Roseweir AK. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers[J]. Clin Sci (Lond), 2019, 133(2): 181-193.
[40]
Zheng Y, Wang T, Tu X, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma[J]. J Immunother Cancer, 2019, 7(1): 193.
[41]
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084.
[42]
Rizvi ZA, Dalal R, Sadhu S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity[J]. Sci Adv, 2021, 7(37): eabg5016.
[43]
O’Reilly EM, Oh DY, Dhani N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: A phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5(10): 1431-1438.
[44]
Ritter B, Greten FR. Modulating inflammation for cancer therapy[J]. J Exp Med, 2019, 216(6): 1234-1243.
[45]
Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20212-20217.
[46]
Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy[J]. Nat Med, 2016, 22(8): 851-860.
[47]
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1): 1-10.
[48]
Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes[J]. Cell, 2019, 178(4): 795-806, e12.
[49]
Vitiello GA, Cohen DJ, Miller G. Harnessing the microbiome for pancreatic cancer immunotherapy[J]. Trends Cancer, 2019, 5(11): 670-676.
[50]
Dong J, Gao HL, Wang WQ, et al. Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188484.
[51]
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97.
[52]
Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391): eaan5931.
[53]
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448.
[54]
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.
[55]
Riquelme E, Maitra A, McAllister F. Immunotherapy for pancreatic cancer: more than just a gut feeling[J]. Cancer Discov, 2018, 8(4): 386-388.
[56]
Wei X, Mei C, Li X, et al. The unique microbiome and immunity in pancreatic cancer[J]. Pancreas, 2021, 50(2): 119-129.
[57]
Sutcliffe S, Giovannucci E, Isaacs WB, et al. Acne and risk of prostate cancer[J]. Int J Cancer, 2007, 121(12): 2688-2692.
No related articles found!
阅读次数
全文


摘要