切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 443 -447. doi: 10.3877/cma.j.issn.1674-0793.2022.06.014

综述

胰腺导管腺癌间质纤维化靶向治疗和无创评估的研究现状
石思雅1, 冯仕庭1, 沈冰奇1,()   
  1. 1. 510080 广州,中山大学附属第一医院放射诊断科
  • 收稿日期:2022-06-21 出版日期:2022-12-01
  • 通信作者: 沈冰奇

Progress in the non-invasive evaluation of interstitial fibrosis and targeted therapy for pancreatic ductal adenocarcinoma

Siya Shi1, Shiting Feng1, Bingqi Shen1,()   

  1. 1. Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2022-06-21 Published:2022-12-01
  • Corresponding author: Bingqi Shen
引用本文:

石思雅, 冯仕庭, 沈冰奇. 胰腺导管腺癌间质纤维化靶向治疗和无创评估的研究现状[J]. 中华普通外科学文献(电子版), 2022, 16(06): 443-447.

Siya Shi, Shiting Feng, Bingqi Shen. Progress in the non-invasive evaluation of interstitial fibrosis and targeted therapy for pancreatic ductal adenocarcinoma[J]. Chinese Archives of General Surgery(Electronic Edition), 2022, 16(06): 443-447.

胰腺导管腺癌是恶性程度最高的实体肿瘤之一,其重要的病理组织学特征是在肿瘤进展过程中动态演变的肿瘤间质纤维化。丰富的细胞外基质成分促进肿瘤缺氧进而恶性进展以及形成耐药性。近年来,越来越多的研究丰富了临床对胰腺导管腺癌间质纤维化的生物学和病理生理学的认识和理解,最近的研究结果表明,肿瘤纤维化间质可能具有抑制肿瘤特性,这使得明确其作用更具挑战性。胰腺导管腺癌治疗前后使用影像技术来无创评估间质纤维化程度具有巨大的潜力,尚在研究中的一些间质靶向治疗方法可能有助于改善患者的不良预后。

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant solid tumors. Its important histological feature is the dynamically evolving tumor fibrotic stroma during tumor progression. Abundant extracellular matrix components promote tumor hypoxia and subsequent progression as well as drug resistance. An increasing number of studies have enriched the clinical understanding of biology and pathophysiology of interstitial fibrosis in PDAC. Emerging findings suggest that components of the tumor fibrotic stroma may have tumor-suppressive properties, making it more challenging to clarify its role. The use of imaging techniques to assess the degree of interstitial fibrosis in PDAC non-invasively has great potential, and some new stroma-targeted therapeutic approaches may help to improve the poor prognosis of patients in the future.

[1]
Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data[J]. Nat Rev Cancer, 2022, 22(3): 131-142.
[2]
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17(9): 527-540.
[3]
Pang T, Wilson JS, Apte MV. Pancreatic stellate cells: what’s new?[J]. Curr Opin Gastroenterol, 2017, 33(5): 366-373.
[4]
Olivares O, Mayers JR, Gouirand V, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions[J]. Nat Commun, 2017, 8: 16031.
[5]
Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115.
[6]
Biffi G, Oni TE, Spielman B, et al. IL1-induced JAK/STAT signaling is antagonized by TGF-β to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019, 9(2): 282-301.
[7]
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123.
[8]
Moore MJ, Hamm J, Dancey J, et al. Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: A phase Ⅲ trial of the National Cancer Institute of Canada Clinical Trials Group[J]. J Clin Oncol, 2003, 21(17): 3296-3302.
[9]
Bramhall SR, Schulz J, Nemunaitis J, et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer[J]. Brit J Cancer, 2002, 87(2): 161-167.
[10]
Whatcott CJ, Diep CH, Jiang P, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer[J]. Clin Cancer Res, 2015, 21(15): 3561-3568.
[11]
Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: randomized phase Ⅱstudy of PEGPH20 plus Nab-paclitaxel/gemcitabine versus Nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol, 2018, 36(4): 359-366.
[12]
Ramanathan RK, McDonough SL, Philip PA, et al. Phase ⅠB/Ⅱ randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus folfirinox alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313[J]. J Clin Oncol, 2019, 37(13): 1062-1069.
[13]
Van Cutsem E, Tempero MA, Sigal D, et al. Randomized phase Ⅲ trial of pegvorhyaluronidase Alfa with Nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194.
[14]
Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer[J]. Clin Cancer Res, 2008, 14(19): 5995-6004.
[15]
Catenacci DV, Junttila MR, Karrison T, et al. Randomized phase Ⅰb/Ⅱ study of gemcitabine plus placebo or Vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer[J]. J Clin Oncol, 2015, 33(36): 4284-4292.
[16]
De Jesus-Acosta A, Sugar EA, O’Dwyer PJ, et al. Phase 2 study of Vismodegib, a hedgehog inhibitor, combined with gemcitabine and Nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma[J]. Br J Cancer, 2020, 122(4): 498-505.
[17]
Principe DR, Doll JA, Bauer J, et al. TGFβ: duality of function between tumor prevention and carcinogenesis[J]. J Natl Cancer Inst, 2014, 106(2): djt369.
[18]
Melisi D, Garcia-Carbonero R, Macarulla T, et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer[J]. Br J Cancer, 2018, 119(10): 1208-1214.
[19]
Diop-Frimpong B, Chauhan VP, Krane S, et al. Losartan inhibits collagenⅠsynthesis and improves the distribution and efficacy of nanotherapeutics in tumors[J]. Proc Natl Acad Sci U S A, 2011, 108(7): 2909-2914.
[20]
Murphy JE, Wo JY, Ryan DP, et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial[J]. JAMA Oncol, 2019, 5(7): 1020-1027.
[21]
Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma[J]. Nat Genet, 2015, 47(10): 1168-1178.
[22]
Shi S, Liang C, Xu J, et al. The strain ratio as obtained by endoscopic ultrasonography elastography correlates with the stroma proportion and the prognosis of local pancreatic cancer[J]. Ann Surg, 2020, 271(3): 559-565.
[23]
Attiyeh MA, Chakraborty J, McIntyre CA, et al. CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma[J]. Abdom Radiol (NY), 2019, 44(9): 3148-3157.
[24]
Torphy RJ, Wang Z, True-Yasaki A, et al. Stromal content is correlated with tissue site, contrast retention, and survival in pancreatic adenocarcinoma[J]. JCO Precis Oncol, 2018, 2018.
[25]
Erstad DJ, Sojoodi M, Taylor MS, et al. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI[J]. Clin Cancer Res, 2020, 26(18): 5007-5018.
[26]
Hattori Y, Gabata T, Matsui O, et al. Enhancement patterns of pancreatic adenocarcinoma on conventional dynamic multi-detector row CT: correlation with angiogenesis and fibrosis[J]. World J Gastroenterol, 2009, 15(25): 3114-3121.
[27]
Hashimoto Y, Sclabas GM, Takahashi N, et al. Dual-phase computed tomography for assessment of pancreatic fibrosis and anastomotic failure risk following pancreatoduodenectomy[J]. J Gastrointest Surg, 2011, 15(12): 2193-2204.
[28]
Sofue K, Ueshima E, Masuda A, et al. Estimation of pancreatic fibrosis and prediction of postoperative pancreatic fistula using extracellular volume fraction in multiphasic contrast-enhanced CT[J]. Eur Radiol, 2022, 32(3): 1770-1780.
[29]
Wang Y, Chen ZE, Nikolaidis P, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade[J]. J Magn Reson Imaging, 2011, 33(1): 136-142.
[30]
Noda Y, Goshima S, Tanaka K, et al. Findings in pancreatic MRI associated with pancreatic fibrosis and HbA1c values[J]. J Magn Reson Imaging, 2016, 43(3): 680-687.
[31]
Schawkat K, Eshmuminov D, Lenggenhager D, et al. Preoperative evaluation of pancreatic fibrosis and lipomatosis: correlation of magnetic resonance findings with histology using magnetization transfer imaging and multigradient echo magnetic resonance imaging[J]. Invest Radiol, 2018, 53(12): 720-727.
[32]
Yoon JH, Lee JM, Lee KB, et al. Pancreatic steatosis and fibrosis: quantitative assessment with preoperative multiparametric MR imaging[J]. Radiology, 2016, 279(1): 140-150.
[33]
Liu C, Shi Y, Lan G, et al. Evaluation of pancreatic fibrosis grading by multiparametric quantitative magnetic resonance imaging[J]. J Magn Reson Imaging, 2021, 54(5): 1417-1429.
[34]
Shi Y, Liu Y, Gao F, et al. Pancreatic stiffness quantified with MR elastography: relationship to postoperative pancreatic fistula after pancreaticoenteric anastomosis[J]. Radiology, 2018, 288(2): 476-484.
[35]
Itoh Y, Itoh A, Kawashima H, et al. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens)[J]. J Gastroenterol, 2014, 49(7): 1183-1192.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[4] 娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.
[5] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 徐瑜杰, 赵国栋. 晚期胃癌治疗方法的研究进展和挑战[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 451-455.
[8] 王昆, 潘迪, 王庆, 江克华, 孙发. 机器人手术治疗膀胱副神经节瘤一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 291-292.
[9] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[10] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[11] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[12] 王迪, 吕少诚, 黄金灿, 潘飞, 姜涛, 郎韧. 肺腺癌胰腺转移伴门静脉侵犯一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 457-460.
[13] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[14] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[15] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
阅读次数
全文


摘要