切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 443 -447. doi: 10.3877/cma.j.issn.1674-0793.2022.06.014

综述

胰腺导管腺癌间质纤维化靶向治疗和无创评估的研究现状
石思雅1, 冯仕庭1, 沈冰奇1,()   
  1. 1. 510080 广州,中山大学附属第一医院放射诊断科
  • 收稿日期:2022-06-21 出版日期:2022-12-01
  • 通信作者: 沈冰奇

Progress in the non-invasive evaluation of interstitial fibrosis and targeted therapy for pancreatic ductal adenocarcinoma

Siya Shi1, Shiting Feng1, Bingqi Shen1,()   

  1. 1. Department of Radiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2022-06-21 Published:2022-12-01
  • Corresponding author: Bingqi Shen
引用本文:

石思雅, 冯仕庭, 沈冰奇. 胰腺导管腺癌间质纤维化靶向治疗和无创评估的研究现状[J/OL]. 中华普通外科学文献(电子版), 2022, 16(06): 443-447.

Siya Shi, Shiting Feng, Bingqi Shen. Progress in the non-invasive evaluation of interstitial fibrosis and targeted therapy for pancreatic ductal adenocarcinoma[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2022, 16(06): 443-447.

胰腺导管腺癌是恶性程度最高的实体肿瘤之一,其重要的病理组织学特征是在肿瘤进展过程中动态演变的肿瘤间质纤维化。丰富的细胞外基质成分促进肿瘤缺氧进而恶性进展以及形成耐药性。近年来,越来越多的研究丰富了临床对胰腺导管腺癌间质纤维化的生物学和病理生理学的认识和理解,最近的研究结果表明,肿瘤纤维化间质可能具有抑制肿瘤特性,这使得明确其作用更具挑战性。胰腺导管腺癌治疗前后使用影像技术来无创评估间质纤维化程度具有巨大的潜力,尚在研究中的一些间质靶向治疗方法可能有助于改善患者的不良预后。

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant solid tumors. Its important histological feature is the dynamically evolving tumor fibrotic stroma during tumor progression. Abundant extracellular matrix components promote tumor hypoxia and subsequent progression as well as drug resistance. An increasing number of studies have enriched the clinical understanding of biology and pathophysiology of interstitial fibrosis in PDAC. Emerging findings suggest that components of the tumor fibrotic stroma may have tumor-suppressive properties, making it more challenging to clarify its role. The use of imaging techniques to assess the degree of interstitial fibrosis in PDAC non-invasively has great potential, and some new stroma-targeted therapeutic approaches may help to improve the poor prognosis of patients in the future.

[1]
Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data[J]. Nat Rev Cancer, 2022, 22(3): 131-142.
[2]
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities[J]. Nat Rev Clin Oncol, 2020, 17(9): 527-540.
[3]
Pang T, Wilson JS, Apte MV. Pancreatic stellate cells: what’s new?[J]. Curr Opin Gastroenterol, 2017, 33(5): 366-373.
[4]
Olivares O, Mayers JR, Gouirand V, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions[J]. Nat Commun, 2017, 8: 16031.
[5]
Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115.
[6]
Biffi G, Oni TE, Spielman B, et al. IL1-induced JAK/STAT signaling is antagonized by TGF-β to shape CAF heterogeneity in pancreatic ductal adenocarcinoma[J]. Cancer Discov, 2019, 9(2): 282-301.
[7]
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123.
[8]
Moore MJ, Hamm J, Dancey J, et al. Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: A phase Ⅲ trial of the National Cancer Institute of Canada Clinical Trials Group[J]. J Clin Oncol, 2003, 21(17): 3296-3302.
[9]
Bramhall SR, Schulz J, Nemunaitis J, et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer[J]. Brit J Cancer, 2002, 87(2): 161-167.
[10]
Whatcott CJ, Diep CH, Jiang P, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer[J]. Clin Cancer Res, 2015, 21(15): 3561-3568.
[11]
Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: randomized phase Ⅱstudy of PEGPH20 plus Nab-paclitaxel/gemcitabine versus Nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma[J]. J Clin Oncol, 2018, 36(4): 359-366.
[12]
Ramanathan RK, McDonough SL, Philip PA, et al. Phase ⅠB/Ⅱ randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus folfirinox alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313[J]. J Clin Oncol, 2019, 37(13): 1062-1069.
[13]
Van Cutsem E, Tempero MA, Sigal D, et al. Randomized phase Ⅲ trial of pegvorhyaluronidase Alfa with Nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma[J]. J Clin Oncol, 2020, 38(27): 3185-3194.
[14]
Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer[J]. Clin Cancer Res, 2008, 14(19): 5995-6004.
[15]
Catenacci DV, Junttila MR, Karrison T, et al. Randomized phase Ⅰb/Ⅱ study of gemcitabine plus placebo or Vismodegib, a Hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer[J]. J Clin Oncol, 2015, 33(36): 4284-4292.
[16]
De Jesus-Acosta A, Sugar EA, O’Dwyer PJ, et al. Phase 2 study of Vismodegib, a hedgehog inhibitor, combined with gemcitabine and Nab-paclitaxel in patients with untreated metastatic pancreatic adenocarcinoma[J]. Br J Cancer, 2020, 122(4): 498-505.
[17]
Principe DR, Doll JA, Bauer J, et al. TGFβ: duality of function between tumor prevention and carcinogenesis[J]. J Natl Cancer Inst, 2014, 106(2): djt369.
[18]
Melisi D, Garcia-Carbonero R, Macarulla T, et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer[J]. Br J Cancer, 2018, 119(10): 1208-1214.
[19]
Diop-Frimpong B, Chauhan VP, Krane S, et al. Losartan inhibits collagenⅠsynthesis and improves the distribution and efficacy of nanotherapeutics in tumors[J]. Proc Natl Acad Sci U S A, 2011, 108(7): 2909-2914.
[20]
Murphy JE, Wo JY, Ryan DP, et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial[J]. JAMA Oncol, 2019, 5(7): 1020-1027.
[21]
Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma[J]. Nat Genet, 2015, 47(10): 1168-1178.
[22]
Shi S, Liang C, Xu J, et al. The strain ratio as obtained by endoscopic ultrasonography elastography correlates with the stroma proportion and the prognosis of local pancreatic cancer[J]. Ann Surg, 2020, 271(3): 559-565.
[23]
Attiyeh MA, Chakraborty J, McIntyre CA, et al. CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma[J]. Abdom Radiol (NY), 2019, 44(9): 3148-3157.
[24]
Torphy RJ, Wang Z, True-Yasaki A, et al. Stromal content is correlated with tissue site, contrast retention, and survival in pancreatic adenocarcinoma[J]. JCO Precis Oncol, 2018, 2018.
[25]
Erstad DJ, Sojoodi M, Taylor MS, et al. Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI[J]. Clin Cancer Res, 2020, 26(18): 5007-5018.
[26]
Hattori Y, Gabata T, Matsui O, et al. Enhancement patterns of pancreatic adenocarcinoma on conventional dynamic multi-detector row CT: correlation with angiogenesis and fibrosis[J]. World J Gastroenterol, 2009, 15(25): 3114-3121.
[27]
Hashimoto Y, Sclabas GM, Takahashi N, et al. Dual-phase computed tomography for assessment of pancreatic fibrosis and anastomotic failure risk following pancreatoduodenectomy[J]. J Gastrointest Surg, 2011, 15(12): 2193-2204.
[28]
Sofue K, Ueshima E, Masuda A, et al. Estimation of pancreatic fibrosis and prediction of postoperative pancreatic fistula using extracellular volume fraction in multiphasic contrast-enhanced CT[J]. Eur Radiol, 2022, 32(3): 1770-1780.
[29]
Wang Y, Chen ZE, Nikolaidis P, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade[J]. J Magn Reson Imaging, 2011, 33(1): 136-142.
[30]
Noda Y, Goshima S, Tanaka K, et al. Findings in pancreatic MRI associated with pancreatic fibrosis and HbA1c values[J]. J Magn Reson Imaging, 2016, 43(3): 680-687.
[31]
Schawkat K, Eshmuminov D, Lenggenhager D, et al. Preoperative evaluation of pancreatic fibrosis and lipomatosis: correlation of magnetic resonance findings with histology using magnetization transfer imaging and multigradient echo magnetic resonance imaging[J]. Invest Radiol, 2018, 53(12): 720-727.
[32]
Yoon JH, Lee JM, Lee KB, et al. Pancreatic steatosis and fibrosis: quantitative assessment with preoperative multiparametric MR imaging[J]. Radiology, 2016, 279(1): 140-150.
[33]
Liu C, Shi Y, Lan G, et al. Evaluation of pancreatic fibrosis grading by multiparametric quantitative magnetic resonance imaging[J]. J Magn Reson Imaging, 2021, 54(5): 1417-1429.
[34]
Shi Y, Liu Y, Gao F, et al. Pancreatic stiffness quantified with MR elastography: relationship to postoperative pancreatic fistula after pancreaticoenteric anastomosis[J]. Radiology, 2018, 288(2): 476-484.
[35]
Itoh Y, Itoh A, Kawashima H, et al. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens)[J]. J Gastroenterol, 2014, 49(7): 1183-1192.
[1] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[2] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[3] 马中正, 杨云川, 马翔, 周迟, 丁丁, 霍俊一, 徐楠, 崔培元, 周磊. 胰腺癌双硫死亡相关的lncRNA预后模型的构建及免疫反应研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 368-376.
[4] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[5] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[6] 魏孔源, 仵正, 王铮, 黎韡. 机器人胰腺中段切除后远端胰腺消化道不同重建方式初探[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 295-300.
[7] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[8] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[9] 郭诗翔, 谭明达, 王槐志. 胰头癌淋巴结清扫再思考[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 625-628.
[10] 张昊, 潘卫东. 胰腺癌新辅助化疗后可切除性评估现状及进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 629-633.
[11] 周倜, 吴嘉, 韩方, 徐林伟, 张宇华. 新辅助治疗时代胰腺癌淋巴结清扫研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 634-639.
[12] 王军华, 王锐炫. 胰腺癌新辅助化疗现状和治疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 640-643.
[13] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[14] 罗柳平, 吴萌萌, 陈欣磊, 林科灿. 胰腺全系膜切除在胰头癌根治术中的应用价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 651-656.
[15] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
阅读次数
全文


摘要