切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 456 -461. doi: 10.3877/cma.j.issn.1674-0793.2023.06.013

综述

胃癌预后预测模型的研究进展
张俊, 罗再, 段茗玉, 裘正军, 黄陈()   
  1. 200080 上海交通大学附属第一人民医院胃肠外科
  • 收稿日期:2023-02-20 出版日期:2023-12-01
  • 通信作者: 黄陈
  • 基金资助:
    国家自然科学基金面上项目(82072662); 上海市级医院临床技能与临床创新三年行动计划(SHDC2020CR4022); 上海交通大学医学院高峰高原计划(第二轮)(20191425); 上海市"医苑新星"杰出青年医学人才培养资助计划; 上海市第一人民医院特色国家领军人才培养计划

Research progress of prognostic prediction models for gastric cancer

Jun Zhang, Zai Luo, Mingyu Duan, Zhengjun Qiu, Chen Huang()   

  1. Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
  • Received:2023-02-20 Published:2023-12-01
  • Corresponding author: Chen Huang
引用本文:

张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J/OL]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.

Jun Zhang, Zai Luo, Mingyu Duan, Zhengjun Qiu, Chen Huang. Research progress of prognostic prediction models for gastric cancer[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(06): 456-461.

胃癌由于早期症状不典型且缺乏特异性,检出率相对较低,导致许多患者在初次就诊时就已处于进展期。而进展期胃癌患者的生存预后总体较差且差异较大,5年生存率为20%~60%。因此,需要制定更加个性化的治疗策略来提高生存率,缩小不同患者的预后差异。建立准确、可靠又方便的胃癌预后评估模型是当前胃癌诊治中亟待解决的重要问题之一。Cox回归分析模型能够分析多种因素对患者预后的影响;列线图模型能够通过计算不同预后因素的得分,直观地显示不同预后因素对患者预后的贡献程度;神经网络模型可以自动学习,深度学习模型可以自动提取特征,建立高效的预测模型,适用于大规模数据的胃癌预后预测。诸如以上预测模型可以区分胃癌患者预后的危险程度,有望为个性化治疗方案和后续诊治提供参考,在一定程度上改善患者的预后生存。

Due to the atypical symptoms and lack of specificity, the detection rate of early gastric cancer is relatively low, leading to many patients already in advanced stage since first diagnosis. However, the prognosis of patients with advanced gastric cancer is generally poor and varies greatly, with the 5-year survival rate hovering between 20% and 60%. Therefore, it is necessary to develop more personalized treatment strategies to improve the survival rate of patients and reduce the difference in prognosis of different patients. The establishment of reliable models for gastric cancer is one of the important problems to be solved urgently in the diagnosis and treatment of gastric cancer. Cox regression analysis model can analyze the impact of multiple factors on the prognosis of patients; nomogram model can directly display the contribution of different prognostic factors to the prognosis of patients by calculating the scores of different prognostic factors; the artificial neural network model can be automatically learned, and the deep learning model can automatically extract features to establish an efficient prediction model, which are applicable to the prognosis prediction of gastric cancer with large-scale data. The above predictive models may be used to differentiate the risk of gastric cancer, which is expected to provide personalized reference for follow-up treatment for patients, and improve the survival of patients to some extent.

表1 其他不同种类模型的预测能力
[1]
哈丽达·夏尔甫哈孜, 冯娟, 范晓棠, 等. 进展期胃癌根治术后5年预后因素分析及生存预测模型的建立[J]. 胃肠病学和肝病学杂志, 2020, 29(10): 1129-1133.
[2]
Strong VE, Wu AW, Selby LV, et al. Differences in gastric cancer survival between the U.S. and China[J]. J Surg Oncol, 2015, 112(1): 31-37.
[3]
Duan S, Wang P, Liu F, et al. Novel immune-risk score of gastric cancer: A molecular prediction model combining the value of immune-risk status and chemosensitivity[J]. Cancer Med, 2019, 8(5): 2675-2685.
[4]
Jiang Y, Zhang Q, Hu Y, et al. ImmunoScore signature: A prognostic and predictive tool in gastric cancer[J]. Ann Surg, 2018, 267(3): 504-513.
[5]
Wu C, Wang N, Zhou H, et al. Development and validation of a nomogram to individually predict survival of young patients with nonmetastatic gastric cancer: A retrospective cohort study[J]. Saudi J Gastroenterol, 2019, 25(4): 236-244.
[6]
Wang J, Qin D, Tao Z, et al. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer[J]. Front Immunol, 2022, 13: 1056932.
[7]
Shao W, Yang Z, Fu Y, et al. The pyroptosis-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer[J]. Front Cell Dev Biol, 2021, 9: 676485.
[8]
周新童, 党胜春. 基于不同数据库来源数据的胃癌长链非编码RNA预后预测模型构建[J]. 中国普通外科杂志, 2020, 29(10): 1187-1194.
[9]
Cai C, Yang L, Zhuang X, et al. A five-lncRNA model predicting overall survival in gastric cancer compared with normal tissues[J]. Aging, 2021, 13(21): 24349-24359.
[10]
Chen T, Zhang C, Liu Y, et al. A gastric cancer lncRNAs model for MSI and survival prediction based on support vector machine[J]. BMC Genomics, 2019, 20(1): 846.
[11]
Zhu Y, Fang X, Wang L, et al. A predictive nomogram for early death of metastatic gastric cancer: A retrospective study in the SEER database and China[J]. J Cancer, 2020, 11(18): 5527-5535.
[12]
Bando E, Ji X, Kattan MW, et al. Development and validation of a pretreatment nomogram to predict overall survival in gastric cancer[J]. Cancer Med, 2020, 9(16): 5708-5718.
[13]
Hu X, Yang Z, Chen S, et al. Development and external validation of a prognostic nomogram for patients with gastric cancer after radical gastrectomy[J]. Ann Transl Med, 2021, 9(23): 1742.
[14]
张原, 戎泽印, 黄陈. "偏近、朝远":基于原发部位胃癌发生机制研究进展及临床治疗决策思辨[J]. 中华普通外科杂志, 2021, 36(3): 230-234.
[15]
Jeong SH, Kim RB, Park SY, et al. Nomogram for predicting gastric cancer recurrence using biomarker gene expression[J]. Eur J Surg Oncol, 2020, 46(1): 195-201.
[16]
Bai Y, Wei C, Zhong Y, et al. Development and validation of a prognostic nomogram for gastric cancer based on DNA methylation-driven differentially expressed genes[J]. Int J Biol Sci, 2020, 16(7): 1153-1165.
[17]
Deng J, Liang H, Ying G, et al. Methylation of ras association domain protein 10 (RASSF10) promoter negative association with the survival of gastric cancer[J]. Am J Cancer Res, 2014, 4(6): 916-923.
[18]
Cao W, Zhou W, Li M, et al. A novel signature based on CeRNA and immune status predicts prognostic risk and drug sensitivity in gastric cancer patients[J]. Front Immunol, 2022, 13: 951135.
[19]
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5: 4006.
[20]
Wang Y, Liu W, Yu Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J]. Eur Radiol, 2020, 30(2): 976-986.
[21]
Jiang Y, Chen C, Xie J, et al. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer[J]. EBioMedicine, 2018, 36: 171-182.
[22]
Yoshida H, Shimazu T, Kiyuna T, et al. Automated histological classification of whole-slide images of gastric biopsy specimens[J]. Gastric Cancer, 2018, 21(2): 249-257.
[23]
Que SJ, Chen QY, Zhong Q, et al. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer[J]. World J Gastroenterol, 2019, 25(43): 6451-6464.
[24]
Nilsaz-Dezfouli H, Abu-Bakar MR, Arasan J, et al. Improving gastric cancer outcome prediction using single time-point artificial neural network models[J]. Cancer Inform, 2017, 16: 1176935116686062.
[25]
Dong D, Fang MJ, Tang L, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: An international multicenter study[J]. Ann Oncol, 2020, 31(7): 912-920.
[26]
Jin C, Jiang Y, Yu H, et al. Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer[J]. Br J Surg, 2021, 108(5): 542-549.
[27]
Jiang Y, Zhang Z, Yuan Q, et al. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: A retrospective study[J]. Lancet Digit Health, 2022, 4(5): e340-e350.
[28]
Dai S, Liu T, Liu X Q, et al. Identification of an immune-related signature predicting survival risk and immune microenvironment in gastric cancer[J]. Front Cell Dev Biol, 2021, 9: 687473.
[29]
Cui Y, Zhang J, Li Z, et al. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study[J]. EClinicalMedicine, 2022, 46: 101348.
[30]
Dai S, Huang Y, Liu T, et al. Development and validation of RNA binding protein-applied prediction model for gastric cancer[J]. Aging (Albany NY), 2021, 13(4): 5539-5552.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[8] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[9] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[10] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[11] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[12] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[13] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?