切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 39 -43. doi: 10.3877/cma.j.issn.1674-0793.2024.01.007

论著

基于血清肿瘤标志物预测结直肠癌肝转移模型价值分析
杨立胜, 刘梦鸾, 任维聃, 姜国胜, 刘桂伟()   
  1. 061000 沧州市中心医院结直肠肛门外科
    061000 沧州市第三医院肝病四科
  • 收稿日期:2023-09-07 出版日期:2024-02-01
  • 通信作者: 刘桂伟
  • 基金资助:
    河北省中医药管理局中医药类科研计划项目(2021285)

Prognostic value of a prediction model for colorectal cancer liver metastasis based on serum tumor markers

Lisheng Yang, Mengluan Liu, Weidan Ren, Guosheng Jiang, Guiwei Liu()   

  1. Department of Colorectal and Anal Surgery, Cangzhou Central Hospital, Cangzhou 061000, China
    No. 4 Department of Hepatology, Cangzhou Third Hospital, Cangzhou 061000, China
  • Received:2023-09-07 Published:2024-02-01
  • Corresponding author: Guiwei Liu
引用本文:

杨立胜, 刘梦鸾, 任维聃, 姜国胜, 刘桂伟. 基于血清肿瘤标志物预测结直肠癌肝转移模型价值分析[J/OL]. 中华普通外科学文献(电子版), 2024, 18(01): 39-43.

Lisheng Yang, Mengluan Liu, Weidan Ren, Guosheng Jiang, Guiwei Liu. Prognostic value of a prediction model for colorectal cancer liver metastasis based on serum tumor markers[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2024, 18(01): 39-43.

目的

探讨血清肿瘤标志物与结直肠癌肝转移(CRLM)间的关系,建立CRLM预测模型并评价其价值。

方法

本研究为回顾性病例对照研究,纳入2021年4月至2022年10月沧州市中心医院收治的结直肠癌患者371例,依据有无肝转移将其分为CRLM组59例,无肝转移(non-CRLM)组312例。比较两组患者临床资料、治疗前血常规及血清肿瘤标志物检测结果。采用二元Logistic回归分析CRLM的独立影响因素,并以此建立预测模型,利用受试者工作特征(ROC)曲线及拟合优度检验评价预测模型的效能。

结果

单因素分析显示,CRLM组中性粒细胞-淋巴细胞比值(NLR)、癌胚抗原(CEA)、糖类抗原19-9(CA19-9)和唾液酸/羟脯氨酸(SA&Hyp)水平均高于non-CRLM组(均P<0.01);多因素Logistic回归分析显示,经校正后血清CEA(OR=1.021,95% CI:1.012~1.030)、CA19-9(OR=1.003,95% CI:1.001~1.005)和SA&Hyp高表达(OR=1.055,95% CI:1.033~1.077)均为CRLM的独立危险因素(均P<0.01)。ROC曲线分析显示,与CEA、CA19-9和SA&Hyp单独检测相比,三者联合构建的预测模型对CRLM的诊断效能更佳(ROC曲线下面积0.867,95% CI:0.818~0.916,敏感度0.831,特异度0.785,均P<0.05)。拟合优度检验结果提示该预测模型拟合度较好(χ2=8.441,P=0.392)。

结论

血清CEA、CA19-9和SA&Hyp高表达是CRLM发生的独立危险因素,基于此3项指标构建的CRLM预测模型具有良好的诊断价值,可为临床工作中CRLM的早期诊断提供新参考。

Objective

To investigate the relationship between serum tumor markers and colorectal cancer liver metastasis (CRLM), thus to establish a prediction model for CRLM and evaluate its application value.

Methods

A total of 371 patients with colorectal cancer admitted to Cangzhou Central Hospital from April 2021 to October 2022 were included in this study. They were divided into two groups according to whether there were liver metastases. There were 59 patients in the CRLM group and 312 patients in the non-CRLM group. Clinical data, test results of pre-treatment blood and serum tumor markers of patients were collected retrospectively. Binary Logistic regression was used to analyze the independent influencing factors of CRLM, and the diagnostic efficacy of the prediction model was evaluated using receiver operating characteristics (ROC) curve and goodness-of-fit test.

Results

Compared with non-CRLM group, neutrophil to lymphocyte ratio (NLR), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and sialic acid/hydroxyproline (SA&Hyp) levels were significantly higher (all P<0.01). Binary Logistic regression analysis showed that the high levels of serum CEA (OR=1.021, 95% CI: 1.012-1.030), CA19-9 (OR=1.003, 95% CI: 1.001-1.005) and SA&Hyp (OR=1.055, 95% CI: 1.033-1.077) were independent risk factors for CRLM after correction (all P<0.01). ROC curve analysis revealed that the predictive modeling (AUC=0.867, 95% CI: 0.818-0.916, sensitivity was 0.831, specificity was 0.785) jointly constructed by CEA, CA19-9 and SA&Hyp was more effective in predicting CRLM compared with any single indicator (all P<0.05). The goodness-of-fit test results indicated that the prediction model had good matching (χ2=8.441, P=0.392).

Conclusions

High levels of serum CEA, CA19-9 and SA&Hyp are independent risk factors for CRLM. The prediction model of CRLM based on the joint detection of risk factors shows a reasonable predictive value and may provide new insights for the early diagnosis of CRLM in clinical work.

表1 两组结直肠癌患者临床资料比较
表2 血清CEA、CA19-9、SA&Hyp与结直肠癌肝转移的关系
图1 癌胚抗原(CEA)、糖类抗原19-9(CA19-9)、唾液酸/羟脯氨酸(SA&Hyp)和预测模型预测结直肠癌肝转移(CRLM)的ROC曲线
表3 几种指标预测结直肠癌肝转移的效能分析
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
Hur K, Toiyama Y, Okugawa Y, et al. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer[J]. Gut, 2017, 66(4): 654-665.
[3]
Ohashi K, Wang Z, Yang YM, et al. NOD-like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD[J]. Hepatology, 2019, 70(5): 1582-1599.
[4]
Conciatori F, Bazzichetto C, Amoreo CA, et al. BRAF status modulates interelukin-8 expression through a CHOP-dependent mechanism in colorectal cancer[J]. Commun Biol, 2020, 3(1): 546.
[5]
Benson AB, Venook AP, Al-Hawary MM, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359.
[6]
Benson AB, Venook AP, Al-Hawary MM, et al. Rectal cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(10): 1139-1167.
[7]
唐旭, 韩冰, 刘威, 等. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J/CD]. 中华普外科手术学杂志(电子版), 2024, 18(1): 16-20.
[8]
刘代江, 蒋俊艳, 万晓强, 等. 结直肠癌肝转移患者生存状况及预后影响因素分析[J/CD]. 中华消化病与影像杂志(电子版), 2023, 13(5): 284-288.
[9]
Song Z, Chen E, Qian J, et al. Serum chitinase activity prognosticates metastasis of colorectal cancer[J]. BMC Cancer, 2019, 19(1): 629.
[10]
Guo S, Wei G, Chen W, et al. Fast and deep diagnosis using blood-based ATR-FTIR spectroscopy for digestive tract cancers[J]. Biomolecules, 2022, 12(12): 1815.
[11]
Fang C, Huang Y, Chen C, et al. The prognostic value of serum apolipoprotein A-I level and neutrophil-to-lymphocyte ratio in colorectal cancer liver metastasis[J]. J Oncol, 2022, 2022: 9149788.
[12]
Grenader T, Nash S, Adams R, et al. Derived neutrophil lymphocyte ratio is predictive of survival from intermittent therapy in advanced colorectal cancer: A post hoc analysis of the MRC COIN study[J]. Br J Cancer, 2016, 114(6): 612-615.
[13]
Chen Q, Li GL, Zhu HQ, et al. The neutrophil-to-lymphocyte ratio and lactate dehydrogenase combined in predicting liver metastasis and prognosis of colorectal cancer[J]. Front Med (Lausanne), 2023, 10: 1205897.
[14]
Munkley J, Scott E. Targeting aberrant sialylation to treat cancer[J]. Medicines (Basel), 2019, 6(4): 102.
[15]
Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications[J]. Nat Rev Cancer, 2015, 15(9): 540-555.
[16]
Peixoto A, Relvas-Santos M, Azevedo R, et al. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks[J]. Front Oncol, 2019, 9: 380.
[17]
Rodrigues E, Macauley MS. Hypersialylation in cancer: modulation of inflammation and therapeutic opportunities[J]. Cancers (Basel), 2018, 10(6): 207.
[18]
Egan H, Treacy O, Lynch K, et al. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment[J]. Cell Rep, 2023, 42(5): 112475.
[19]
Kopečná M, Macháček M, Roh J, et al. Proline, hydroxyproline, and pyrrolidone carboxylic acid derivatives as highly efficient but reversible transdermal permeation enhancers[J]. Sci Rep, 2022, 12(1): 19495.
[20]
Montgomery H, Rustogi N, Hadjisavvas A, et al. Proteomic profiling of breast tissue collagens and site-specific characterization of hydroxyproline residues of collagen alpha-1-(I)[J]. J Proteome Res, 2012, 11(12): 5890-5902.
[21]
Saito J, Imamura Y, Itoh J, et al. ELISA measurement for urinary 3-hydroxyproline-containing peptides and its preliminary application to healthy persons and cancer patients[J]. Anticancer Res, 2010, 30(3): 1007-1014.
[22]
Shu J, Li CG, Liu YC, et al. Comparison of serum tumor associated material (TAM) with conventional biomarkers in cancer patients[J]. Asian Pac J Cancer Prev, 2012, 13(5): 2399-2403.
[23]
Li PL, Zhang X, Li TF, et al. Combined detection of sialic acid and hydroxyproline in diagnosis of ovarian cancer and its comparison with human epididymis protein 4 and carbohydrate antigen 125[J]. Clin Chim Acta, 2015, 439: 148-153.
[24]
Cong ZJ, Hu LH, Ji JT, et al. A long-term follow-up study on the prognosis of endoscopic submucosal dissection for colorectal laterally spreading tumors[J]. Gastrointest Endosc, 2016, 83(4): 800-807.
[25]
Stiksma J, Grootendorst DC, van der Linden PW. CA19-9 as a marker in addition to CEA to monitor colorectal cancer[J]. Clin Colorectal Cancer, 2014, 13(4): 239-244.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[3] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[4] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[5] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[6] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[7] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[8] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要