切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2025, Vol. 19 ›› Issue (01) : 42 -47. doi: 10.3877/cma.j.issn.1674-0793.2025.01.007

论著

成石饮食诱发胆结石及肝损伤机制的研究
陈浩1,(), 林梁1, 邹来宾1, 郭胜蓝1   
  1. 1.510800 广州市花都区人民医院肝胆胰外科
  • 收稿日期:2024-07-23 出版日期:2025-02-01
  • 通信作者: 陈浩
  • 基金资助:
    广州市花都区医疗卫生一般科研专项项目(22-HDWS-033)广州市花都区人民医院院内医学重点学科建设项目(消化病学科YNZDXK202201)广州市花都区人民医院院内基金项目(2021B02)

Mechanisms of gallstone and liver injury induced by lithogenic diet

Hao Chen1,(), Liang Lin1, Laibin Zou1, Shenglan Guo1   

  1. 1.Department of Gallbladder, Hepatopancreatobiliary Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
  • Received:2024-07-23 Published:2025-02-01
  • Corresponding author: Hao Chen
引用本文:

陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.

Hao Chen, Liang Lin, Laibin Zou, Shenglan Guo. Mechanisms of gallstone and liver injury induced by lithogenic diet[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2025, 19(01): 42-47.

目的

在小鼠模型基础上,探索成石饮食诱发胆结石及肝损伤的机制。

方法

将12只C57BL/6J 小鼠以随机数字表法分为成石组和对照组,每组6 只。成石组喂养成石饲料,构建胆结石及肝损伤模型;对照组给予普通饲料。取肝脏进行苏木精-伊红(HE)染色和免疫组织化学(IHC)染色,采用免疫印迹(WB)、实时荧光定量PCR(qPCR)、酶联免疫吸附实验(ELISA)、流式细胞术等技术进行检测。

结果

与对照组相比,成石组小鼠胆囊出现结石,肝脏病理检测显示肝损伤明显,血清碱性磷酸酶(ALP)、丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、胆红素(bilirubin)和胆汁酸(BA)水平显著升高(P<0.05);Ⅱ型一氧化氮合酶(NOS2)、白细胞介素1β(IL-1 β)的mRNA 水平表达显著上升(P<0.001),AML12 细胞乳酸脱氢酶、活性氧表达量明显提升(P<0.000 1);肝脏核因子κB(NF-κB)信号通路明显激活,M1 型巨噬细胞极化明显。

结论

成石饲料诱导的小鼠胆结石及肝损伤可促进M1 型巨噬细胞极化,进一步介导肝细胞损伤。

Objective

To investigate the mechanisms underlying gallstone formation and liver injury induced by the lithogenic diet using a mouse model.

Methods

Twelve C57BL/6J mice were divided into two groups by random number table method: stone-forming group and control group, with six mice in each group.The stone-forming group was fed a lithogenic diet that promoted gallstone formation to establish a model of gallstone-induced liver injury, while the control group received a regular diet.Liver tissues were stained with hematoxylin-eosin staining (HE) and immunohistochemical staining (IHC), and analyzed using Western blotting (WB), quantitative real-time PCR (qPCR), enzyme linked immunosorbent assay (ELISA),flow cytometry, and other techniques.

Results

Compared to the mice in the control group, those in the stone-forming group exhibited gallstones.Pathological examination of their livers revealed significant liver injury.Additionally, levels of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and bile acid (BA) were significantly elevated.The mRNA levels of nitric oxide synthase 2 (NOS2) and interleukin-1β (IL-1β) were significantly increased (P<0.001), and the expression levels of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) in AML12 cells were significantly increased (P<0.000 1).Activation of the nuclear factor kappa-B (NF-κB) signaling pathway in the liver was observed along with polarization towards M1-type macrophages.

Conclusion

The consumption of a lithogenic diet leads to gallstone formation and subsequent liver injury through promoting M1-type macrophage polarization which further mediates hepatocyte damage.

表1 引物序列
***P<0.001,****P<0.000 1
图2 对照组和LD 组小鼠的肝脏组织巨噬细胞特异性蛋白表达结果 A 为流式细胞术检测肝脏中M1 和M2 型巨噬细胞数量差异;B~E 分别为小鼠肝脏Arg1、Ym1、NOS2、IL-1β 的qPCR 结果,***P<0.001,ns 差异无统计学意义
图3 正常和肝胆结石小鼠的p-p65ser536 和p65 的蛋白表达结果 A 为免疫组织化学检测小鼠肝脏p-p65ser536 和p65 水平(400×)及其量化图;B 为免疫印迹分析检测小鼠肝脏p-p65ser536 和p65 水平;C~F 为qPCR 检测Ana-1细胞与两组小鼠肝细胞共培养后NOS2、IL-1β、Arg-1、Ym1 的相对表达量;G~H 分别为NOS2 和IL-1β 的表达量;I 为Ana-1 细胞与两组小鼠肝细胞共培养后p-p65ser536 和p65 蛋白表达结果;J 为细胞LDH 活性检测;K 为流式细胞术检测细胞的ROS 水平;L 为免疫印迹分析检测AML12与Ana-1 或M1 共培养后p-p65ser536 和p65 蛋白表达结果;ns 表示差异无统计学意义;**P<0.01,****P<0.000 1
[23]
Hu Y, Gu J, Lin J, et al.(-)-Epigallocatechin-3-gallate (EGCG)modulates polarized macrophages to suppress M1 phenotype and promote M2 polarization in vitro and in vivo[J].J Funct Food, 2021,87: 104743.
[24]
Qu X, Zhang Z, Hu W, et al.Attenuation of the Na/K-ATPase/Src/ROS amplification signaling pathway by astaxanthin ameliorates myocardial cell oxidative stress injury[J].Mol Med Rep, 2020,22(6): 5125-5134.
[25]
Wang C, Ma C, Gong L, et al.Macrophage polarization and its role in liver disease[J].Front Immunol, 2021, 12: 803037.
[1]
Motta RV, Saffioti F, Mavroeidis VK.Hepatolithiasis:epidemiology, presentation, classification and management of a complex disease[J].World J Gastroenterol, 2024, 30(13): 1836-1850.
[2]
Xia Y, Xu Y, Liu Q, et al.Glutaredoxin 1 regulates cholesterol metabolism and gallstone formation by influencing protein S-glutathionylation[J].Metabolism, 2023, 145: 155610.
[3]
He C, Shen W, Chen C, et al.Circadian rhythm disruption influenced hepatic lipid metabolism, gut microbiota and promoted cholesterol gallstone formation in mice[J].Front Endocrinol(Lausanne), 2021, 12: 723918.
[4]
Shen S, Huang D, Qian S, et al.Hyodeoxycholic acid attenuates cholesterol gallstone formation via modulation of bile acid metabolism and gut microbiota[J].Eur J Pharmacol, 2023, 955:175891.
[5]
Lazarov T, Juarez-Carreño S, Cox N, et al.Physiology and diseases of tissue-resident macrophages[J].Nature, 2023, 618(7966): 698-707.
[6]
Ni Y, Zhuge F, Ni L, et al.CX3CL1/CX3CR1 interaction protects against lipotoxicity-induced nonalcoholic steatohepatitis by regulating macrophage migration and M1/M2 status[J].Metabolism,2022, 136: 155272.
[7]
Liao G, Ruan H, Peng P, et al.Clonorchiasis in patients with biliary and pancreatic diseases: diagnosis and risk factors[J].Biomed Res Int, 2020, 2020: 2946541.
[8]
Wu H, Chen C, Ziani S, et al.Fibrotic events in the progression of cholestatic liver disease[J].Cells, 2021, 10(5): 1107.
[9]
Yang Y, Wang Y, Wang C, et al.Macrophages and derived-TNF-α promote lipopolysaccharide-induced upregulation of endogenous β-glucuronidase in the epithelial cells of the bile duct: A possible facilitator of hepatolithiasis formation[J].Clin Res Hepatol Gastroenterol, 2023, 47(1): 102062.
[10]
Sehnert B, Burkhardt H, Dübel S, et al.Cell-type targeted NFkappaB inhibition for the treatment of inflammatory diseases[J].Cells, 2020, 9(7): 1627.
[11]
Rius-Pérez S, Pérez S, Martí-Andrés P, et al.Nuclear factor kappa B signaling complexes in acute inflammation[J].Antioxid Redox Signal, 2020, 33(3): 145-165.
[12]
Kerneur C, Cano CE, Olive D.Major pathways involved in macrophage polarization in cancer[J].Front Immunol, 2022, 13:1026954.
[13]
Liu Z, Zhou W, Liu Q, et al.Pachymic acid prevents hemorrhagic shock-induced cardiac injury by suppressing M1 macrophage polarization and NF-κB signaling pathway[J].Am J Chin Med,2023, 51(8): 2157-2173.
[14]
Xu X, Lei Y, Chen L, et al.Phosphorylation of NF-κB p65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target[J].J Exp Clin Cancer Res, 2021, 40(1):253.
[15]
Gallucci GM, Alsuwayt B, Auclair AM, et al.Fenofibrate downregulates NF-κB signaling to inhibit pro-inflammatory cytokine secretion in human THP-1 macrophages and during primary biliary cholangitis[J].inflammation, 2022, 45(6): 2570-2581.
[16]
Zheng Z, Xiong H, Zhao Z, et al.Tibetan medicine Si-Wei-Qiang-Wei Powder ameliorates cholecystitis via inhibiting the production of pro-inflammatory cytokines and regulating the MAPK signaling pathway[J].J Ethnopharmacol, 2023, 303: 116026.
[17]
Hu H, Shao W, Liu Q, et al.Gut microbiota promotes cholesterol gallstone formation by modulating bile acid composition and biliary cholesterol secretion[J].Nat Commun, 2022, 13(1): 252.
[18]
Zhu M, Sun X, Qi X, et al.Exosomes from high glucose-treated macrophages activate macrophages andinduce inflammatory responses via NF-κB signaling pathway in vitro and in vivo[J].Int Immunopharmacol, 2020, 84: 106551.
[19]
Tao L, Ren X, Zhai W, et al.Progress and prospects of noncanonical NF-κB signaling pathway in the regulation of liver diseases[J].Molecules, 2022, 27(13): 4275.
[20]
Zhou S, Zhao T, Chen X, et al.Runx1 deficiency promotes M2 macrophage polarization through enhancing STAT6 phosphorylation[J].Inflammation, 2023, 46(6): 2241-2253.
[21]
Chen W, Liu Y, Chen J, et al.The Notch signaling pathway regulates macrophage polarization in liver diseases[J].Int Immunopharmacol, 2021, 99: 107938.
[22]
Zhu LW, Li Z, Dong X, et al.Ficolin-A induces macrophage polarization to a novel pro-inflammatory phenotype distinct from classical M1[J].Cell Commun Signal, 2024, 22(1): 271.
[1] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[2] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[3] 王迎迎, 谢平. 乙型肝炎病毒感染合并肺结核患者发生肝损伤的危险因素及预测模型构建[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 267-273.
[4] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[5] 刘斌, 朱慧, 席江伟, 郑卫, 王新波. 健康饮食模式降低胆结石风险的相关因素Logistic分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 188-191.
[6] 陈宇凡, 屈振南, 陈宝坤. 1684例无症状胆囊结石患者病情进展影响因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2023, 17(03): 311-314.
[7] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J/OL]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[8] 张志恒, 张来柱, 彭进, 余德才. Laennec入路腹腔镜胆囊切除术治疗Mirrizi综合征Ⅱ型[J/OL]. 中华腔镜外科杂志(电子版), 2023, 16(03): 190-192.
[9] 王庆亮, 党兮, 师凯, 刘波. 腹腔镜联合胆道子镜经胆囊管胆总管探查取石术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 313-313.
[10] 牛斌, 佘林璐, 翁康强, 李沪, 吴翔, 戴英波. 辛伐他汀预防胆石症的孟德尔随机化研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 60-67.
[11] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[12] 涂建华, 史亚波, 李杨, 刘华兵, 黄长文, 饶雪峰. 一期与二期经皮经肝胆道镜取石术治疗中国肝内胆管结石患者安全性与疗效比较Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 201-205.
[13] 关计添, 尤克增, 耿义群, 孙树宜, 赖凌峰, 沈智威, 张晓磊, 周腾, 黄淮栋, 杨琳, 程焱, 吴烁华, 赵芝泓, 庄彩玉, 吴仁华. 质子磁共振波谱对急性肝损伤兔肝脏脂质与葡萄糖代谢评估价值的研究[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 160-165.
[14] 刘艳, 唐神结. 肠道菌群与抗结核药及其所致肝损伤的相关性研究进展[J/OL]. 中华诊断学电子杂志, 2023, 11(02): 82-86.
[15] 张寅杰, 王之怀, 唐雪琳, 高鹏, 朱春富, 贾中芝, 秦锡虎, 岳茂兴. 大剂量维生素B6对严重创伤后应激性肝损伤治疗作用的实验研究[J/OL]. 中华卫生应急电子杂志, 2023, 09(05): 285-292.
阅读次数
全文


摘要