[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
|
[2] |
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49.
|
[3] |
Martire S, Nguyen J, Sundaresan A, et al. Differential contribution of p300 and CBP to regulatory element acetylation in mESCs[J].BMC Mol Cell Biol, 2020, 21(1): 55.
|
[4] |
Kung H. High expression of p300 in human breast cancer correlates with tumor recurrence and predicts adverse prognosis[J].Chin J Cancer Res, 2011, 23(3): 201-207.
|
[5] |
Gou P, Zhang W. Protein lysine acetyltransferase CBP/p300: A promising target for small molecules in cancer treatment[J]. Biomed Pharmacother, 2024, 171: 116130.
|
[6] |
Haery L, Lugo-Picó JG, Henry RA, et al. Histone acetyltransferase-deficient p300 mutants in diffuse large B cell lymphoma have altered transcriptional regulatory activities and are required for optimal cell growth[J]. Mol Cancer, 2014, 13: 29.
|
[7] |
Culig Z, Puhr M. Androgen receptor-interacting proteins in prostate cancer development and therapy resistance[J]. Am J Pathol, 2024, 194(3): 324-334.
|
[8] |
Hu H, Zhang Y, Zhai H, et al. P300 reduces TUBB4B expression to facilitate the biological process of migration and invasion of non-small cell lung cancer cells[J]. Tissue Cell, 2024, 88: 102386.
|
[9] |
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics,2019[J]. CA Cancer J Clin, 2019, 69(6): 438-451.
|
[10] |
Hanker AB, Sudhan DR, Arteaga CL. Overcoming endocrine resistance in breast cancer[J]. Cancer Cell, 2020, 37(4): 496-513.
|
[11] |
Waddell AR, Huang H, Liao D. CBP/p300: critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers[J]. Cancers (Basel), 2021,13(12): 2872.
|
[12] |
Cheng-Sánchez I, Gosselé Katherine A, Palaferri L, et al.Discovery and characterization of active CBP/EP300 degraders targeting the HAT domain[J]. ACS Med Chem Lett, 2024, 15(3):355-361.
|
[13] |
Wang J, Zhou Z. Estrogen-dependent activation of NCOA3 couples with p300 and NF-κB to mediate antiapoptotic genes in ERpositive breast cancer cells[J]. Discov Oncol, 2023, 14(1): 28.
|
[14] |
Bommi-Reddy A, Park-Chouinard S, Mayhew DN, et al. CREBBP/EP300 acetyltransferase inhibition disrupts FOXA1-bound enhancers to inhibit the proliferation of ER+ breast cancer cells[J].PLoS One, 2022, 17(3): e0262378.
|
[15] |
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7):2750-2767.
|
[16] |
Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, et al. CREBBP/EP300 bromodomain inhibition affects the proliferation of ARpositive breast cancer cell lines[J]. Mol Cancer Res, 2019, 17(3):720-730.
|
[17] |
Caligiuri M, Williams GL, Castro J, et al. FT-6876, a potent and selective inhibitor of CBP/p300, is active in preclinical models of androgen receptor-positive breast cancer[J]. Target Oncol, 2023,18(2): 269-285.
|
[18] |
Lasko LM, Jakob CG, Edalji RP, et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours[J]. Nature, 2017, 550(7674): 128-132.
|
[19] |
Malta TM, Sokolov A, Gentles AJ, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation[J].Cell, 2018, 173(2): 338-354. e15.
|
[20] |
Ring A, Kaur P, Lang JE. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple negative breast cancer[J]. BMC Cancer, 2020, 20(1): 1076.
|
[21] |
Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019,18(1): 157.
|
[22] |
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12(12): 5447-5454.
|
[23] |
Xu R, Wang F, Yang H, et al. Action sites and clinical application of HIF-1α inhibitors[J]. Molecules, 2022, 27(11): 3426.
|
[24] |
Fox SB, Bragança J, Turley H, et al. CITED4 inhibits hypoxiaactivated transcription in cancer cells, and its cytoplasmic location in breast cancer is associated with elevated expression of tumor cell hypoxia-inducible factor 1 alpha[J]. Cancer Res, 2004, 64(17):6075-6081.
|
[25] |
Semenza GL. Mechanisms of breast cancer stem cell specification and self-renewal mediated by hypoxia-inducible factor 1[J]. Stem Cells Transl Med, 2023, 12(12): 783-790.
|
[26] |
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890.
|
[27] |
Yokomizo C, Yamaguchi K, Itoh Y, et al. High expression of p300 in HCC predicts shortened overall survival in association with enhanced epithelial mesenchymal transition of HCC cells[J].Cancer Lett, 2011, 310(2): 140-147.
|
[28] |
Peña C, García JM, García V, et al. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas[J]. Int J Cancer, 2006, 119(9): 2098-2104.
|
[29] |
Chanda A, Sarkar A, Bonni S. The SUMO system and TGFβ signaling interplay in regulation of epithelial-mesenchymal transition: implications for cancer progression[J]. Cancers (Basel),2018, 10(8): 264.
|
[30] |
Chanda A, Sarkar A, Deng L, et al. Sumoylated SnoN interacts with HDAC1 and p300/CBP to regulate EMT-associated phenotypes in mammary organoids[J]. Cell Death Dis, 2023, 14(7): 405.
|
[31] |
王中兰. 靶向EP300激活ERV-dsRNA通路诱导抗肿瘤免疫机制研究[D]. 杭州: 浙江中医药大学, 2024.
|
[32] |
Herbertz S, Sawyer JS, Stauber AJ, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway[J]. Drug Des Devel Ther, 2015, 9: 4479-4499.
|
[33] |
Zhao PW, Cui JX, Wang XM. Upregulation of p300 in paclitaxelresistant TNBC: implications for cell proliferation via the PCK1/AMPK axis[J]. Pharmacogenomics J, 2024, 24(2): 5.
|
[34] |
Strachowska M, Gronkowska K, Sobczak M, et al. I-CBP112 declines overexpression of ATP-binding cassette transporters and sensitized drug-resistant MDA-MB-231 and A549 cell lines to chemotherapy drugs[J]. Biomed Pharmacother, 2023, 168: 115798.
|
[35] |
Strachowska M, Gronkowska K, Michlewska S, et al. CBP/p300 bromodomain inhibitor-I-CBP112 declines transcription of the key ABC transporters and sensitizes cancer cells to chemotherapy drugs[J]. Cancers (Basel), 2021, 13(18): 4614.
|
[36] |
He ZX, Wei BF, Zhang X, et al. Current development of CBP/p300 inhibitors in the last decade[J]. Eur J Med Chem, 2021, 209:112861.
|