切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 111 -115. doi: 10.3877/cma.j.issn.1674-0793.2025.02.008

综述

E1A结合蛋白P300与乳腺癌发生发展的关系研究进展
慕春燕1, 杨大伟2, 张云东2, 崔兆清3,()   
  1. 1. 250117 济南,山东第一医科大学(山东省医学科学院)研究生部
    2. 252000 聊城,聊城市人民医院中原生物医学研究院
    3. 252000 聊城,聊城市人民医院甲状腺乳腺外科
  • 收稿日期:2024-07-13 出版日期:2025-04-01
  • 通信作者: 崔兆清
  • 基金资助:
    山东省医药卫生发展计划项目(202302081495)

Research progress on the relationship between E1A binding protein P300 and the development of breast cancer

Chunyan Mu1, Dawei Yang2, Yundong Zhang2, Zhaoqing Cui3,()   

  1. 1. Postgraduate School,Shandong First Medical University (Shandong Academy of Medical Sciences), Ji'nan 250117, China
    2. Zhongyuan Institute of Biomedicine, Liaocheng City People's Hospital, Liaocheng 252000, China
    3. Department of Thyroid and Breast Surgery, Liaocheng City People's Hospital, Liaocheng 252000, China
  • Received:2024-07-13 Published:2025-04-01
  • Corresponding author: Zhaoqing Cui
引用本文:

慕春燕, 杨大伟, 张云东, 崔兆清. E1A结合蛋白P300与乳腺癌发生发展的关系研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 111-115.

Chunyan Mu, Dawei Yang, Yundong Zhang, Zhaoqing Cui. Research progress on the relationship between E1A binding protein P300 and the development of breast cancer[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2025, 19(02): 111-115.

乳腺癌是女性发病率最高的恶性肿瘤之一,已成为威胁女性健康的主要杀手。乳腺癌的治疗方式包括手术、放化疗、内分泌治疗以及靶向治疗,综合治疗能够有效地延长患者生存期,但对现有化疗的耐药性越来越多。为了使患者获得更好的临床治疗结果,寻找新的治疗靶点是亟待解决的问题。E1A 结合蛋白P300(EP300)是广泛表达的转录共激活因子和组蛋白乙酰化转移酶,能够乙酰化组蛋白中保守的赖氨酸残基,从而促进基因的激活转录。EP300是具有多个功能结构域的蛋白分子,能够调控多种蛋白之间的相互作用,在细胞增殖、周期调控、凋亡、DNA损伤修复和干细胞样特性等方面发挥重要而多样的生物学功能。目前EP300在乳腺癌中已被证实与肿瘤复发相关并提示不良预后,现将其与乳腺癌发生发展的关系作一综述。

Breast cancer is one of the malignant tumours with the highest incidence rate among women and has become a major killer threatening women’s health. There are various treatment modalities for breast cancer, including surgery, radiotherapy, chemotherapy, endocrine therapy and targeted therapy.Combination therapy is effective in prolonging patient survival. But resistance to chemotherapy is increasing,and the search for new therapeutic targets is an urgent clinical problem in order to achieve better clinical outcomes for breast cancer patients. E1A binding protein P300 (EP300) is a widely expressed transcriptional co-activator and histone acetyltransferase that acetylates conserved lysine residues in histones to promote activated transcription of genes. EP300 is a protein molecule with multiple functional structural domains that can modulate the interactions between multiple proteins. EP300 has important and diverse biological functions in cell proliferation, cell cycle regulation, apoptosis, DNA damage repair and stem cell-like properties. EP300 has now been shown to be associated with tumour recurrence in breast cancer and suggests poor prognosis. The relationship between EP300 and the development of breast cancer is now reviewed.

[1]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
[2]
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49.
[3]
Martire S, Nguyen J, Sundaresan A, et al. Differential contribution of p300 and CBP to regulatory element acetylation in mESCs[J].BMC Mol Cell Biol, 2020, 21(1): 55.
[4]
Kung H. High expression of p300 in human breast cancer correlates with tumor recurrence and predicts adverse prognosis[J].Chin J Cancer Res, 2011, 23(3): 201-207.
[5]
Gou P, Zhang W. Protein lysine acetyltransferase CBP/p300: A promising target for small molecules in cancer treatment[J]. Biomed Pharmacother, 2024, 171: 116130.
[6]
Haery L, Lugo-Picó JG, Henry RA, et al. Histone acetyltransferase-deficient p300 mutants in diffuse large B cell lymphoma have altered transcriptional regulatory activities and are required for optimal cell growth[J]. Mol Cancer, 2014, 13: 29.
[7]
Culig Z, Puhr M. Androgen receptor-interacting proteins in prostate cancer development and therapy resistance[J]. Am J Pathol, 2024, 194(3): 324-334.
[8]
Hu H, Zhang Y, Zhai H, et al. P300 reduces TUBB4B expression to facilitate the biological process of migration and invasion of non-small cell lung cancer cells[J]. Tissue Cell, 2024, 88: 102386.
[9]
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics,2019[J]. CA Cancer J Clin, 2019, 69(6): 438-451.
[10]
Hanker AB, Sudhan DR, Arteaga CL. Overcoming endocrine resistance in breast cancer[J]. Cancer Cell, 2020, 37(4): 496-513.
[11]
Waddell AR, Huang H, Liao D. CBP/p300: critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers[J]. Cancers (Basel), 2021,13(12): 2872.
[12]
Cheng-Sánchez I, Gosselé Katherine A, Palaferri L, et al.Discovery and characterization of active CBP/EP300 degraders targeting the HAT domain[J]. ACS Med Chem Lett, 2024, 15(3):355-361.
[13]
Wang J, Zhou Z. Estrogen-dependent activation of NCOA3 couples with p300 and NF-κB to mediate antiapoptotic genes in ERpositive breast cancer cells[J]. Discov Oncol, 2023, 14(1): 28.
[14]
Bommi-Reddy A, Park-Chouinard S, Mayhew DN, et al. CREBBP/EP300 acetyltransferase inhibition disrupts FOXA1-bound enhancers to inhibit the proliferation of ER+ breast cancer cells[J].PLoS One, 2022, 17(3): e0262378.
[15]
Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies[J]. J Clin Invest, 2011, 121(7):2750-2767.
[16]
Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, et al. CREBBP/EP300 bromodomain inhibition affects the proliferation of ARpositive breast cancer cell lines[J]. Mol Cancer Res, 2019, 17(3):720-730.
[17]
Caligiuri M, Williams GL, Castro J, et al. FT-6876, a potent and selective inhibitor of CBP/p300, is active in preclinical models of androgen receptor-positive breast cancer[J]. Target Oncol, 2023,18(2): 269-285.
[18]
Lasko LM, Jakob CG, Edalji RP, et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours[J]. Nature, 2017, 550(7674): 128-132.
[19]
Malta TM, Sokolov A, Gentles AJ, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation[J].Cell, 2018, 173(2): 338-354. e15.
[20]
Ring A, Kaur P, Lang JE. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple negative breast cancer[J]. BMC Cancer, 2020, 20(1): 1076.
[21]
Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J]. Mol Cancer, 2019,18(1): 157.
[22]
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12(12): 5447-5454.
[23]
Xu R, Wang F, Yang H, et al. Action sites and clinical application of HIF-1α inhibitors[J]. Molecules, 2022, 27(11): 3426.
[24]
Fox SB, Bragança J, Turley H, et al. CITED4 inhibits hypoxiaactivated transcription in cancer cells, and its cytoplasmic location in breast cancer is associated with elevated expression of tumor cell hypoxia-inducible factor 1 alpha[J]. Cancer Res, 2004, 64(17):6075-6081.
[25]
Semenza GL. Mechanisms of breast cancer stem cell specification and self-renewal mediated by hypoxia-inducible factor 1[J]. Stem Cells Transl Med, 2023, 12(12): 783-790.
[26]
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890.
[27]
Yokomizo C, Yamaguchi K, Itoh Y, et al. High expression of p300 in HCC predicts shortened overall survival in association with enhanced epithelial mesenchymal transition of HCC cells[J].Cancer Lett, 2011, 310(2): 140-147.
[28]
Peña C, García JM, García V, et al. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas[J]. Int J Cancer, 2006, 119(9): 2098-2104.
[29]
Chanda A, Sarkar A, Bonni S. The SUMO system and TGFβ signaling interplay in regulation of epithelial-mesenchymal transition: implications for cancer progression[J]. Cancers (Basel),2018, 10(8): 264.
[30]
Chanda A, Sarkar A, Deng L, et al. Sumoylated SnoN interacts with HDAC1 and p300/CBP to regulate EMT-associated phenotypes in mammary organoids[J]. Cell Death Dis, 2023, 14(7): 405.
[31]
王中兰. 靶向EP300激活ERV-dsRNA通路诱导抗肿瘤免疫机制研究[D]. 杭州: 浙江中医药大学, 2024.
[32]
Herbertz S, Sawyer JS, Stauber AJ, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway[J]. Drug Des Devel Ther, 2015, 9: 4479-4499.
[33]
Zhao PW, Cui JX, Wang XM. Upregulation of p300 in paclitaxelresistant TNBC: implications for cell proliferation via the PCK1/AMPK axis[J]. Pharmacogenomics J, 2024, 24(2): 5.
[34]
Strachowska M, Gronkowska K, Sobczak M, et al. I-CBP112 declines overexpression of ATP-binding cassette transporters and sensitized drug-resistant MDA-MB-231 and A549 cell lines to chemotherapy drugs[J]. Biomed Pharmacother, 2023, 168: 115798.
[35]
Strachowska M, Gronkowska K, Michlewska S, et al. CBP/p300 bromodomain inhibitor-I-CBP112 declines transcription of the key ABC transporters and sensitizes cancer cells to chemotherapy drugs[J]. Cancers (Basel), 2021, 13(18): 4614.
[36]
He ZX, Wei BF, Zhang X, et al. Current development of CBP/p300 inhibitors in the last decade[J]. Eur J Med Chem, 2021, 209:112861.
[1] 王昭雨, 姜军. 乳腺癌外科治疗理论和技术的发展与挑战[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 1-5.
[2] 张群, 李俊杰. 乳腺癌外科十大热点[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 6-11.
[3] 徐航程, 王佳玉. PI3K/AKT/mTOR 信号通路及其靶向治疗在乳腺癌中的应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 12-19.
[4] 方婉婷, 商家炜, 孟英爽, 闫婷, 明健. 一步核酸扩增在乳腺癌前哨淋巴结转移检测中的应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 20-26.
[5] 王峰, 曲更宝, 王文彦, 代艳亭. 罗汉果醇对人乳腺癌细胞自噬和凋亡的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 27-32.
[6] 李琳琳, 白雪, 赵海东, 梁曦, 李学璐. 21 基因复发风险评分在早期乳腺癌中的应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 33-38.
[7] 辛岗, 刘佳妮, 胡崇珠, 杨颖. HER-2 表达与HER-2 阳性乳腺癌临床病理特征及靶向治疗疗效的关系[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 45-48.
[8] 郭健冉, 解磐磐, 王松, 谭明真, 付波. 特异性DNA 甲基化位点在乳腺癌中的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 49-53.
[9] 黄小辉, 王紫娟, 周围, 郭琼, 廖妮, 谭米多. 乳腺腺样囊性癌的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 54-57.
[10] 杨颖, 辛岗, 王丽君, 胡崇珠. 吡咯替尼新辅助治疗HER-2 阳性乳腺癌的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 58-60.
[11] 河北省抗癌协会乳腺癌专业委员会护理协作组. 乳腺癌中心静脉通路护理管理专家共识[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 321-329.
[12] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[13] 苏明, 唐丹萍, 王萍, 何谦. 乳腺癌改良根治术后即刻乳房重建的方法选择研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 231-234.
[14] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[15] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
阅读次数
全文


摘要