切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 115 -118. doi: 10.3877/cma.j.issn.1674-0793.2025.02.009

综述

胰蛋白酶2在胰腺癌中的研究进展
李腾1, 郝少龙1,2, 韩威1,2,()   
  1. 1. 101199 北京,首都医科大学附属北京潞河医院普外科
    2. 101199 北京,首都医科大学附属北京潞河医院中心实验室
  • 收稿日期:2024-10-21 出版日期:2025-04-01
  • 通信作者: 韩威
  • 基金资助:
    北京市自然科学基金资助项目(7234377)

Research progress of serine protease 2 in pancreatic cancer

Teng Li1, Shaolong Hao1,2, Wei Han1,2,()   

  1. 1. Department of General Surgery, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing 101199, China
    2. Central Laboratory, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing 101199, China
  • Received:2024-10-21 Published:2025-04-01
  • Corresponding author: Wei Han
引用本文:

李腾, 郝少龙, 韩威. 胰蛋白酶2在胰腺癌中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 115-118.

Teng Li, Shaolong Hao, Wei Han. Research progress of serine protease 2 in pancreatic cancer[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2025, 19(02): 115-118.

胰蛋白酶(PRSS)2是一种丝氨酸蛋白酶,通常表达于食管、胃肠及胰腺等组织器官的细胞质中,其可作为低密度脂蛋白受体相关蛋白(LRP)1配体、基质金属蛋白酶激活物以及高效消化酶激活剂,介导肿瘤免疫微环境重塑、上皮-间质转化、KRAS致癌突变及诱导胰腺炎-癌转化等多重机制,促进胰腺癌发生发展。本文通过总结PRSS2的分子结构及功能特点,并对其在胰腺癌中的相关研究进行综述,旨在为进一步探明PRSS2在胰腺癌中的作用机制提供理论参考。

Serine protease 2 (PRSS2) is a serine protease, which is usually expressed in the cytoplasm of cells within tissues and organs such as the esophagus, gastrointestinal tract and pancreas.It serves as a ligand for low-density lipoprotein receptor-related protein 1 (LRP1), an activator of matrix metalloproteinases, and a potent activator of digestive enzymes. PRSS2 mediates multiple mechanisms,including the remodeling of the tumor immune microenvironment, epithelial-mesenchymal transition, KRAS oncogenic mutations, and the induction of pancreatic inflammation-cancer transformation, thereby promoting the occurrence and development of pancreatic cancer. This article summarizes the molecular structure and functional characteristics of PRSS2 and reviews relevant research on its role in pancreatic cancer. The aim is to provide theoretical reference for further elucidating the mechanisms of PRSS2 in pancreatic cancer.

[1]
Masson E, Ewers M, Paliwal S, et al. The PRSS3P2 and TRY7 deletion copy number variant modifies risk for chronic pancreatitis[J]. Pancreatology, 2023, 23(1): 48-56.
[2]
Chen Y, Wang B, Zhao Z, et al. PRSS2 overexpression relates to poor prognosis and promotes proliferation, migration and invasion in gastric cancer[J]. Tissue Cell, 2022, 79: 101949.
[3]
Wang J, Wan J, Wang L, et al.Wild-type human PRSS2 and PRSS1R122H cooperatively initiate spontaneous hereditary pancreatitis in transgenic mice[J]. Gastroenterology, 2022, 163(1):313-315. e314.
[4]
Qin H, Zhang S, Shen L, et al. High expression of serine protease 2(PRSS2) associated with invasion, metastasis, and proliferation in gastric cancer[J]. Aging (Albany NY), 2023, 15(7): 2473-2484.
[5]
Sui L, Wang S, Ganguly D, et al. PRSS2 remodels the tumor microenvironment via repression of Tsp1 to stimulate tumor growth and progression[J]. Nat Commun, 2022, 13(1): 7959.
[6]
Vilen ST, Suojanen J, Salas F, et al. Trypsin-2 enhances carcinoma invasion by processing tight junctions and activating ProMT1-MMP[J]. Cancer Invest, 2012, 30(8): 583-592.
[7]
Yasuda H, Kataoka K, Takeyama Y, et al. Usefulness of urinary trypsinogen-2 and trypsinogen activation peptide in acute pancreatitis: A multicenter study in Japan[J]. World J Gastroenterol, 2019, 25(1): 107-117.
[8]
Narasimhan A, Shahda S, Kays JK, et al. Identification of potential serum protein biomarkers and pathways for pancreatic cancer cachexia using an aptamer-based discovery platform[J]. Cancers(Basel), 2020, 12(12): 3787.
[9]
Lebedeva IV, Matsuoka Y, Al-Shareef H, et al. Effects of decreased Rac activity and malignant state on oral squamous cell carcinoma in vitro[J]. Plos One, 2021, 16(1): e0212323.
[10]
Wu G, Su J, Zeng L, et al. LncRNA BCAN-AS1 stabilizes c-Myc via N6-methyladenosine-mediated binding with SNIP1 to promote pancreatic cancer[J]. Cell Death Differ, 2023, 30(10): 2213-2230.
[11]
Bian B, Juiz NA, Gayet O, et al. Pancreatic cancer organoids for determining sensitivity to bromodomain and extra-terminal inhibitors (BETi)[J]. Front Oncol, 2019, 9: 475.
[12]
Leal AS, Liu P, Krieger-Burke T, et al. The bromodomain inhibitor, INCB057643, targets both cancer cells and the tumor microenvironment in two preclinical models of pancreatic cancer[J]. Cancers, 2020, 13(1): 96.
[13]
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis[J]. J Hematol Oncol, 2022, 15(1): 129.
[14]
Wang F, Yi J, Chen Y, et al. PRSS2 regulates EMT and metastasis via MMP-9 in gastric cancer[J]. Acta Histochem, 2023, 125(6):152071.
[15]
El-Ashmawy NE, Khedr NF, Mansour MG, et al. TNM staging for GIT cancers is correlated with the level of MMPs and TGFbeta1[J]. Clin Exp Med, 2020, 20(4): 545-555.
[16]
Sun HY, Du ST, Li YY, et al. Bromodomain and extraterminal inhibitors emerge as potential therapeutic avenues for gastrointestinal cancers[J]. World J Gastrointest Oncol, 2022,14(1): 75-89.
[17]
Cabot D, Brun S, Paco N, et al. KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer[J].Oncogene, 2021, 40(38): 5730-5740.
[18]
Khan E, Chakrabarty S, Shariff S, et al. Genetics and genomics of chronic pancreatitis with a focus on disease biology and molecular pathogenesis[J]. Glob Med Genet, 2023, 10(4): 324-334.
[19]
Frendi S, Martineau C, Cazier H, et al. Role of the fatty pancreatic infiltration in pancreatic oncogenesis[J]. Sci Rep 2024, 14(1):6582.
[20]
Xu Z, Huang Z, Zhang Y, et al. Farnesoid X receptor activation inhibits pancreatic carcinogenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(7): 166811.
[21]
Del Poggetto E, Ho IL, Balestrieri C, et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis[J]. Science, 2021, 373(6561): eabj0486.
[22]
Ako S, Teper Y, Ye L, et al. Statins inhibit inflammatory cytokine production by macrophages and acinar-to-ductal metaplasia of pancreatic cells[J]. Gastro Hep Advances, 2022, 1(4): 640-651.
[23]
Zhou X, Xie L, Bergmann F, et al. The bile acid receptor FXR attenuates acinar cell autophagy in chronic pancreatitis[J]. Cell Death Discov, 2017, 3: 17027.
[24]
Wang D, Han S, Lv G, et al. Pancreatic acinar cells-derived sphingosine-1-phosphate contributes to fibrosis of chronic pancreatitis via inducing autophagy and activation of pancreatic stellate cells[J]. Gastroenterology, 2023, 165(6): 1488-1504,e1420.
[1] 虞先濬. 胰腺肿瘤外科:外科学遇见肿瘤学——拥抱精准、走向卓越[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 27-27.
[2] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[3] 马中正, 杨云川, 马翔, 周迟, 丁丁, 霍俊一, 徐楠, 崔培元, 周磊. 胰腺癌双硫死亡相关的lncRNA预后模型的构建及免疫反应研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 368-376.
[4] 李健雄, 周江, 李涛, 乔培宇, 汤鑫, 董明. 两种不同保脾胰体尾切除术治疗胰体尾肿瘤的临床比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 325-328.
[5] 杨培容, 潘刚, 周春霞. 胰腺癌术后胰瘘的危险因素及治疗进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 228-230.
[6] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[7] 魏孔源, 仵正, 王铮, 黎韡. 机器人胰腺中段切除后远端胰腺消化道不同重建方式初探[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 295-300.
[8] 蒋佳君, 韦德令, 任洪冰, 朱海, 王继龙, 徐邦浩, 郭雅, 卢婷婷, 张灵, 吕自力, 文张. 全胰腺切除术治疗胰腺癌安全性和疗效分析并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 281-289.
[9] 周倜, 吴嘉, 韩方, 徐林伟, 张宇华. 新辅助治疗时代胰腺癌淋巴结清扫研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 634-639.
[10] 张昊, 潘卫东. 胰腺癌新辅助化疗后可切除性评估现状及进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 629-633.
[11] 郭诗翔, 谭明达, 王槐志. 胰头癌淋巴结清扫再思考[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 625-628.
[12] 王军华, 王锐炫. 胰腺癌新辅助化疗现状和治疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 640-643.
[13] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[14] 罗柳平, 吴萌萌, 陈欣磊, 林科灿. 胰腺全系膜切除在胰头癌根治术中的应用价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 651-656.
[15] 张瑜, 姜梦妮. 基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 657-664.
阅读次数
全文


摘要