切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2025, Vol. 19 ›› Issue (05) : 332 -339. doi: 10.3877/cma.j.issn.1674-0793.2025.05.009

论著

人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型
孙圣梅1, 习一清2, 安宁2,()   
  1. 1 434300 荆州,湖北省荆州市公安县人民医院普外科
    2 430079 武汉,湖北省肿瘤医院(湖北省肿瘤研究所) 华中科技大学同济医学院附属肿瘤医院头颈外科
  • 收稿日期:2025-04-14 出版日期:2025-10-01
  • 通信作者: 安宁
  • 基金资助:
    湖北省自然科学基金青年项目(2025AFB249)

Gene prediction model for neoadjuvant therapy response in human epidermal growth factor receptor 2-positive breast cancer

Shengmei Sun1, Yiqing Xi2, Ning An2,()   

  1. 1 Department of General Surgery, Hubei Province Gong’an County People’s Hospital, Jingzhou 434300, China
    2 Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
  • Received:2025-04-14 Published:2025-10-01
  • Corresponding author: Ning An
引用本文:

孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.

Shengmei Sun, Yiqing Xi, Ning An. Gene prediction model for neoadjuvant therapy response in human epidermal growth factor receptor 2-positive breast cancer[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2025, 19(05): 332-339.

目的

构建能有效预测人表皮生长因子受体(HER)2阳性型乳腺癌新辅助化疗联合靶向治疗响应情况的基因预测模型。

方法

整合GEO数据库中进行新辅助化疗联合靶向治疗的HER2阳性型乳腺癌患者的数据集,通过差异基因分析、WGCNA分析及LASSO回归筛选关键基因并构建预测模型。利用基因集富集分析(GSEA)、免疫细胞浸润图谱、免疫评分、药物敏感性评估等分析方法探索潜在相关通路与机制。

结果

筛选出9个关键基因(CD8A、CST7、CXCL13、IL2RB、LDHB、RTN3、SEMA4D、EPB41L1、MYO5C),构建的预测模型在训练集和验证集中均表现出良好的预测效能,曲线下面积分别为0.836、0.827。低风险组(敏感组)呈现免疫活化特征,高风险组(耐药组)相对处于免疫抑制状态。

结论

本研究构建的基因模型可有效预测HER2阳性型乳腺癌新辅助治疗响应情况,免疫微环境活化状态与治疗敏感性密切相关。关键基因为个体化治疗提供潜在生物标志物及干预靶点。

Objective

To construct a gene prediction model that can effectively predict the response to neoadjuvant chemotherapy combined with targeted therapy in human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients.

Methods

The datasets from patients with HER2-positive breast cancer undergoing neoadjuvant chemotherapy combined with targeted therapy were integrated from the GEO database. Differential gene analysis, WGCNA analysis, and LASSO regression were used to screen key genes and construct a predictive model. Potential associated pathways and mechanisms were explored using GSEA, immune cell infiltration levels, immune scoring, and drug sensitivity assessments.

Results

Nine key genes (CD8A, CST7, CXCL13, IL2RB, LDHB, RTN3, SEMA4D, EPB41L1, MYO5C) were identified, and the constructed predictive model demonstrated good predictive performance in both the training set (AUC=0.836) and the validation set (AUC=0.827). The low-risk group (sensitive to treatment) exhibited characteristics of immune activation, while the high-risk group (resistant to treatment) was relatively in an immunosuppressive state.

Conclusions

The gene model constructed in this study can effectively predict the response to neoadjuvant therapy in HER2-positive breast cancer, with the activation status of the immune microenvironment closely related to treatment sensitivity. The key genes provide potential biomarkers and intervention targets for personalized treatment.

图1 差异表达基因分析与WGCNA分析 A. pCR组和RD组差异表达基因的火山图;B. WGCNA标度独立性图;C. WGCNA平均连接度图;D. WGCNA基因树状图和模块颜色;E. WGCNA基因模块与表型关系热图;F. 蓝色模块内的模块成员与基因显著性相关性分析;G. 差异表达基因与WGCNA模块基因的韦恩图
图2 基因预测模型的构建和预测效能的评估 A. 训练集中的LASSO回归参数选择;B. 训练集中的LASSO回归交叉验证图;C. 低风险组和高风险组风险评分的差异;D. GEO数据库训练集的ROC曲线;E.验证集的ROC曲线
图3 高风险组和低风险组的GSEA分析 A. 基于KEGG基因集的通路富集图;B. 基于Hallmark基因集的通路富集图
图4 高风险组和低风险组的免疫相关分析 A. 高风险组和低风险组的免疫细胞浸润水平、免疫表型评分的多算法联合热图; B. 高风险组和低风险组的免疫检查点表达水平;C. 高风险组和低风险组的免疫表型评分;D. TCGA队列中低风险组的肿瘤突变负荷(TMB)瀑布图;E. TCGA队列中高风险组的TMB瀑布图
图5 免疫细胞浸润水平各类算法间一致性分析  CD4+细胞(A)、CD8+细胞(B)、B细胞(C)、自然杀伤细胞(D)、 树突状细胞(E)、巨噬细胞(F)各类算法间的相关性矩阵
图6 高风险和低风险组的药物敏感性分析
图7 关键基因在HER2阳性乳腺癌的Kaplan-Meier生存预后曲线
图8 关键基因的Human Protein Atlas数据库免疫组织化学图
[1]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
[2]
Choong GM, Cullen GD, O’Sullivan CC. Evolving standards of care and new challenges in the management of HER-2 positive breast cancer[J]. CA Cancer J Clin, 2020, 70(5): 355-374.
[3]
Tse T, Sehdev S, Seely J, et al. Neoadjuvant chemotherapy in breast cancer: review of the evidence and conditions that facilitated its use during the global pandemic[J]. Curr Oncol, 2021, 28(2): 1338-1347.
[4]
Villacampa G, Matikas A, Oliveira M, et al. Landscape of neoadjuvant therapy in HER2-positive breast cancer: A systematic review and network meta-analysis[J]. Eur J Cancer, 2023, 190: 112885.
[5]
Schlam I, Tarantino P, Tolaney SM. Overcoming resistance to HER2-directed therapies in breast cancer[J]. Cancers, 2022, 14(16): 3996.
[6]
Aiyappa-Maudsley R, Storr SJ, Rakha EA, et al. CYP2S1 and CYP2W1 expression is associated with patient survival in breast cancer[J]. J Pathol Clin Res, 2022, 8(6): 550-566.
[7]
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling[J]. Genetics, 2022, 220(2): iyab178.
[8]
Mattioli R, Ilari A, Colotti B, et al. Doxorubicin and other anthracyclines in cancers: activity, chemoresistance and its overcoming[J]. Mol Aspects Med, 2023, 93: 101205.
[9]
Chu J, Tang S, Li T, et al. The role of CD8A in the immune microenvironment of breast cancer[J]. Front Biosci (Landmark Ed), 2024, 29(2): 73.
[10]
Zhu L, Wu Y, Zhao H, et al. Immunogenic cell death-related classification reveals prognosis and effectiveness of immunotherapy in breast cancer[J]. Sci Rep, 2024, 14(1): 2025.
[11]
Yan Z, Lijuan Y, Yinhang W, et al. Screening and analysis of RNAs associated with activated memory CD4 and CD8 T cells in liver cancer[J]. World J Surg Oncol, 2022, 20(1): 2.
[12]
Yao S, Zhao L, Chen S, et al. Cervical cancer immune infiltration microenvironment identification, construction of immune scores, assisting patient prognosis and immunotherapy[J]. Front Immunol, 2023, 14: 1135657.
[13]
Sato Y, Shimoda M, Sota Y, et al. Enhanced humoral immunity in breast cancer patients with high serum concentration of anti-HER2 autoantibody[J]. Cancer Med, 2021, 10(4): 1418-1430.
[14]
Mo S, Zhong H, Dai W, et al. ERBB3-related gene PBX1 is associated with prognosis in patients with HER2-positive breast cancer[J]. BMC Genom Data, 2025, 26(1): 2.
[15]
He L, Zhang W, Yang S, et al. Impact of genetic variants in IL-2RA and IL-2RB on breast cancer risk in Chinese Han women[J]. Biochem Genet, 2021, 59(3): 697-713.
[16]
Luo Z, Huang X, Xu X, et al. Decreased LDHB expression in breast tumor cells causes NK cell activation and promotes tumor progression[J]. Cancer Biol Med, 2024, 21(6): 1-28.
[17]
Song S, Shi Y, Wu W, et al. Reticulon 3-mediated Chk2/p53 activation suppresses hepatocellular carcinogenesis and is blocked by hepatitis B virus[J]. Gut, 2021, 70(11): 2159-2171.
[18]
Zhang M, Luo SC. Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance[J]. Genet Mol Res, 2016, 15(1): 15017496.
[19]
Lu F, Ye M, Shen Y, et al. Hypoxic tumor-derived exosomal miR-4488 induces macrophage M2 polarization to promote liver metastasis of pancreatic neuroendocrine neoplasm through RTN3/FABP5 mediated fatty acid oxidation[J]. Int J Biol Sci, 2024, 20(8): 3201-3218.
[20]
Chakraborty S, Paul U, Banerjee S, et al. An integrated approach to understand the regulatory role of miR-27 family in breast cancer metastasis[J]. BioSystems, 2024, 238: 105200.
[21]
Yang YH, Buhamrah A, Schneider A, et al. Semaphorin 4D promotes skeletal metastasis in breast cancer[J]. PLoS One, 2016, 11(2): e0150151.
[22]
Liang T, Sang S, Shao Q, et al. Abnormal expression and prognostic significance of EPB41L1 in kidney renal clear cell carcinoma based on data mining[J]. Cancer Cell Int, 2020, 20(1): 356.
[23]
Gao H, Jin H, Li G. Predicting miRNA targets for head and neck squamous cell carcinoma using an ensemble method[J]. Int J Biol Markers, 2018, 33(1): 87-93.
[24]
Hwang HW, Jung H, Hyeon J, et al. A nomogram to predict pathologic complete response (pCR) and the value of tumor-infiltrating lymphocytes (TILs) for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients[J]. Breast Cancer Res Treat, 2019, 173(2): 255-266.
[25]
Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-126.
[26]
Zhou Z, Luo W, Zheng C, et al. Mitochondrial metabolism blockade nanoadjuvant reversed immune-resistance microenvironment to sensitize albumin-bound paclitaxel-based chemo-immunotherapy[J]. Acta Pharm Sin B, 2024, 14(9): 4087-4101.
[1] 《乳腺癌新辅助免疫治疗专家共识》专家组. 乳腺癌新辅助免疫治疗专家共识(2025年版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 193-197.
[2] 李毅力, 向科, 庄雨陈, 任嘉辉, 高寒. 腔镜辅助乳腺癌保留乳头乳晕的乳房切除术及Ⅰ期乳房重建的临床应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 206-210.
[3] 王锐, 马得原, 韩晶, 金转梅, 张凤竹, 王玉凤, 关泉林. HER-2低表达的年轻乳腺癌患者新辅助化疗疗效影响因素及其预测模型构建[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 211-217.
[4] 刘奕莹, 李魁, 郑子芳, 郑长悦, 林力生, 陈海英, 黄龙伟, 蔡志银, 林慕昀, 苏思盈, 李航. 乳房切除术后乳头乳晕复合体缺血坏死相关因素分析[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 218-225.
[5] 潘靖宇, 易慧旖, 周旋, 李雪, 叶海琳, 黄巧珍, 龙凤. 长链非编码RNA在乳腺癌放射抵抗性中作用机制的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 232-237.
[6] 严孟欣, 朱星瑀, 陈翔. 真空辅助微创切除术治疗乳腺良性分叶状肿瘤的安全性评估:基于倾向性评分匹配[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 269-273.
[7] 高加勒, 张忠涛. 结直肠癌外科领域最新进展与热点[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 595-599.
[8] 孟庆杰, 印玉龙, 韩晓刚, 张浩萌, 江思源, 刘向华, 吕勇刚, 刘曌宇. 保留皮肤乳房切除+乳腺重建术治疗早期乳腺癌的近期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 646-649.
[9] 王达, 朱建敏. 血小板/淋巴细胞计数比值对乳腺癌新辅助化疗疗效的预测效能[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 650-653.
[10] 马超, 王传嘉, 张武坊. 经腋窝入路单孔腔镜保乳术与传统开放手术治疗早期乳腺癌的对比研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 674-677.
[11] 吴少锋, 王茂, 马海龙, 史英, 代引海. 新辅助治疗后肿瘤退缩分级对局部进展期直肠癌患者全直肠系膜切除术效果的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 535-538.
[12] 刘小娜, 史博慧, 马晓霞, 陈瑶, 郝娜. 乳腺癌不同手术方式对术后并发症及康复影响的对比观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 551-554.
[13] 郭雯, 任谊, 魏庆忠. 改良VSD装置在乳腺癌改良根治术后腋窝引流中的临床应用价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 555-558.
[14] 张克俭, 赵建红, 尚培中, 张克勤, 张少斌, 王铁山. 乳腺癌肺转移术后化疗并发骨髓增生异常和Sweet综合征一例报道[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 471-472.
[15] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?