切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2013, Vol. 07 ›› Issue (04) : 298 -302. doi: 10.3877/cma.j.issn.1674-0793.2013.04.013

所属专题: 文献

论著

β-葡萄糖神经酰胺与HBsAg-DC瘤苗协同治疗肝癌的实验研究
戴强生1, 李鹤平2,(), 龙健婷1, 曾睿芳1, 张冰2, 周波2, 幸思忠3, 曾志荣4, 陈伟2, 杨建勇2   
  1. 1. 510080 中山大学附属第一医院肿瘤科
    2. 510080 中山大学附属第一医院放射介入科
    3. 深圳市宝安人民医院内科
    4. 510080 中山大学附属第一医院内科
  • 收稿日期:2013-04-27 出版日期:2013-08-01
  • 通信作者: 李鹤平
  • 基金资助:
    国家自然科学基金项目(30600156,81071247); 广东省科技计划项目(2011B031800022)

Experimental study of β-GC combined with HBsAg gene-modified dendritic cell-based tumor vaccine to hepatocellular carcinoma by different immune ways

Qiang-sheng DAI1, He-ping LI2,(), Jian-ting LONG1, Rui-fang ZENG1, Bing ZHANG2, Bo ZHOU2, Si-zhong XING3, Zhi-rong ZENG4, Wei CHEN2, Jian-yong YANG2   

  1. 1. Department of Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 , China
  • Received:2013-04-27 Published:2013-08-01
  • Corresponding author: He-ping LI
  • About author:
    Corresponding author: LI He-ping, Email:
引用本文:

戴强生, 李鹤平, 龙健婷, 曾睿芳, 张冰, 周波, 幸思忠, 曾志荣, 陈伟, 杨建勇. β-葡萄糖神经酰胺与HBsAg-DC瘤苗协同治疗肝癌的实验研究[J]. 中华普通外科学文献(电子版), 2013, 07(04): 298-302.

Qiang-sheng DAI, He-ping LI, Jian-ting LONG, Rui-fang ZENG, Bing ZHANG, Bo ZHOU, Si-zhong XING, Zhi-rong ZENG, Wei CHEN, Jian-yong YANG. Experimental study of β-GC combined with HBsAg gene-modified dendritic cell-based tumor vaccine to hepatocellular carcinoma by different immune ways[J]. Chinese Archives of General Surgery(Electronic Edition), 2013, 07(04): 298-302.

目的

探讨β-葡萄糖神经酰胺(β-GC)联合乙型肝炎表面抗原(HBsAg)基因修饰树突状细胞(dendritic cell, DC)瘤苗治疗肝癌的作用。

方法

以重组腺病毒为载体构建HBsAg-DC瘤苗。将C57BL/6J小鼠随机分为6组(A-F,6只/组),其中A、B、C组接种PBS液2次,D、E、F组接种HBsAg-DC瘤苗2次。皮下注入HepG2 22.1.5肝癌细胞当天始,B、E组接受β-GC(1.5 μg)腹腔注射,C、F组接受β-GC(15 μg)灌胃给药,A、D组为安慰剂对照,比较不同组间移植瘤生长情况。

结果

B、C组移植瘤生长较之A组明显受抑(P<0.05),E、F组移植瘤生长较之D组明显受抑(P<0.05)。A-F组移植瘤大小(mm3)分别为364.2±3.06,236.5±8.96,251.0±5.76,75.0±5.9,35.3±4.46,38.5±5.47。经腹腔注射给药与灌胃给药相比在抗瘤作用方面差异无统计学意义。

结论

β-GC经腹腔或灌胃给药均具有提高HBsAg-DC瘤苗的免疫治疗作用,其协同抗肿瘤效应的机制可能通过激活NKT细胞。

Objective

To explore the efficacy of β-GC combined with HBsAg gene-modified DC vaccine on animal model with HCC using different immunization routes.

Methods

Recombinant adenovirus vector-mediated HBsAg gene-modified DC was used to construct HBsAg-DC which was infused into C57BL/6J mice bearing HBsAg-related HCC by subcutaneous injection. Mice in group A, B and C were vaccinated with PBS, group D, E and F were vaccinated with pAd-HBsAg-DC twice before HepG2 22.1.5 inoculation as described above. Starting at the day of inoculation, mice were treated with daily intra-peritoneal. (ip, 1.5μg per mouse) β-GC injection in group B and E or daily oral β-GC doses(po, 15μg per mouse) in group C and F. Group A and D receiving vehicle (po) were set as control for β-GC treatment.The effectiveness of the immune therapy on tumor growth was compared among different groups.

Results

Tumor size measured 36 days after inoculation was (364.2±3.06)mm3 in group A, (236.5±8.96)mm3 in group B, (251.0±5.76)mm3 in group C, (75.0±5.9)mm3 in group D, (35.3±4.46)mm3 in group E, and (38.5±5.47)mm3 in group F. The application of β-GC demonstrated anti-tumor activity by itself (group B and C), and also enhanced the tumor preventive effect of pAd-HBsAg-DC (group E and F). No difference in tumor growth was observed between ip and po application of β-GC.

Conclusion

β-GC may serve as an immune enhancer to augment the anti-tumor immunity triggered by HBsAg gene-modified DC vaccine. It's antitumor effect may be related to activation of NKT cells.

图1 光学显微镜下DC形态特征(×400)
图2 DC表型标志物免疫荧光法检测
图3 DC刺激同种异体T淋巴细胞的增殖能力
图4 β-GC激活肝NKT细胞及与HBsAg-DC瘤苗协同抗癌的效能
1
杨静悦,刘文超,曹大勇, 等. 腺病毒介导的HBsAg基因修饰树突状细胞瘤苗对HepG2 22.1.5肝癌细胞的免疫效应. 中华肿瘤杂志, 2007, 29(10): 728-732.
2
幸思忠,薛翼苏,李鹤平, 等. HSP70-HBsAg基因修饰DC瘤苗抗肝癌作用的实验研究. 当代医学, 2012, 18(3): 4-6.
3
Shibolet O, Alper R, Zlotogarov L, et al. NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer, 2003, 106(2): 236-243.
4
Lalazar G, Preston S, Zigmond E, et al. Glycolipids as immune modulatory tools. Mini Rev Med Chem, 2006, 6(11): 1249-1253.
5
Zigmond E, Preston S, Pappo O, et al. Beta-glucosylceramide: a novel method for enhancement of natural killer T lymphocyte plasticity in murine models of immunemediated disorders. Gut, 2007, 56(1): 82-89.
6
Mizrahi M, Lalazar G, Ben Ya'acov A, et a1. Beta-glycoglycosp-hingolipid-induced augmentation of the anti-HBV immune response is associated with altered CD8 and NKT lymphocyte distribution: a novel adjuvant for HBV vaccination. Vaccine, 2008, 26(21): 2589-2595.
7
Yang JY, Cao DY, Xue Y, et al. Improvement of dendriticbased vaccine efficacy against hepatitis B virus-related hepatocellular carcinoma by two tumor-associated antigen gene-infected dendritic cells. Hum Immunol, 2010, 71(3): 255-262.
8
Beckebaum S, Cicinnati VR, Zhang X, et al. Hepatitis B virus-induced defect of monocytederived dendritic cells leads to impaired T helper type 1 response in vitro: mechanisms for viral immune escape. Immunology, 2003, 109(4): 487-495.
9
匡铭,刁竞芳,彭宝岗, 等. CytoMPS原位疫苗治疗肝癌的抗瘤作用及其免疫效应[J/CD]. 中华普通外科学文献:电子版, 2010, 4(5): 415-419.
10
Schmidt T, Ziske C, Märten A, et al. Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL/6 pancreatic murine tumor model. Cancer Res, 2003, 63(24): 8962-8967.
11
Stanic AK, De Silva AD, Park JJ, et al. Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by beta-D-glucosylceramide synthase deficiency. Proc Natl Acad Sci, 2003, 100: 1849-1854.
12
Senchenkov A, Litvak DA, Cabot MC, et al. Targeting ceramide metabolism a strategy for overcoming drug resistance. J Natl Cancer Inst, 2001, 93(5): 347-357.
[1] 翟松会. 树突状细胞在呼吸道合胞病毒免疫逃逸中的作用研究进展[J]. 中华妇幼临床医学杂志(电子版), 2011, 07(01): 66-69.
[2] 尤娜, 褚萨萨, 朱进, 张馨, 杨志国, 汪茂荣. 生物活性透明质酸对脂多糖诱导的人树突状细胞和巨噬细胞炎症应答作用[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(01): 14-19.
[3] 肖倩, 张丹丹, 张婷, 贺婵娟, 张伟芳, 吴登旬, 刘英. 树突状细胞在口腔扁平苔藓发病机制中的作用[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 229-233.
[4] 李一鸣, 陈冠辉, 余东升. 石墨烯及其衍生物作为基因载体的研究进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(02): 131-134.
[5] 赵广峰, 朱易凡. 白细胞介素2基因转染对裸鼠乳腺癌肺转移的影响[J]. 中华普通外科学文献(电子版), 2017, 11(03): 164-167.
[6] 陈晓霞, 陈敏, 穆德广. DC-SIGN在肿瘤免疫中的研究进展[J]. 中华肺部疾病杂志(电子版), 2017, 10(05): 594-596.
[7] 谢林岑, 陈月秋, 沈振亚. 高表达microRNA-155的骨髓间充质干细胞对免疫调节的影响[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(02): 88-94.
[8] 江均良, 何净明, 黄泽坚, 刘开睿, 张磊. 肝滤泡树突状细胞肉瘤一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2016, 05(04): 254-259.
[9] 赵坤, 叶小鸣. 2014年胆囊癌NCCN治疗指南解读与思考[J]. 中华肝脏外科手术学电子杂志, 2015, 04(02): 76-78.
[10] 张先舟, 聂常富, 韩风, 周进学, 邱大鹏, 李庆军, 蒙博, 白睿华, 王涛, 庞春, 庄浩. 肝滤泡树突状细胞肉瘤一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2015, 04(02): 109-112.
[11] 孔祥琳, 黄尤光, 杨之斌, 程先硕, 李云峰. 重组可溶性Tie2对结肠癌生长及肝转移的抑制作用[J]. 中华结直肠疾病电子杂志, 2013, 02(03): 109-113.
[12] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
[13] 赵梓妍, 丁怡, 马建民. 雌激素缺乏对泪腺组织影响的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 252-256.
[14] 郑善翠, 王楷文, 刘磊, 邓志勇, 陈芳, 孙学明, 曹君君, 唐佳. 浆细胞样树突状细胞及T淋巴细胞相关细胞因子在原发性干燥综合征患者唇腺组织中的检测与临床意义[J]. 中华临床医师杂志(电子版), 2019, 13(06): 444-448.
[15] 廖雨琴, 许青, 祝宇翀, 单宇, 杨阳, 刘军权, 黄丹婷, 孙香香. 三叶青提取物对人树突状细胞功能的影响[J]. 中华临床实验室管理电子杂志, 2019, 07(03): 150-155.
阅读次数
全文


摘要