切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2013, Vol. 07 ›› Issue (05) : 397 -399. doi: 10.3877/cma.j.issn.1674-0793.2013.05.016

所属专题: 文献

综述

线粒体自噬在肝相关疾病中的作用
王超臣1, 张培建1   
  1. 1. 225002 扬州大学第二临床医学院普通外科研究室
  • 收稿日期:2013-05-19 出版日期:2013-10-01
  • 基金资助:
    扬州市科技攻关项目(YZ2009051,YZ2010087)

Targeting mitophagy for the treatment of liver diseases

Chao-chen WANG1, Pei-jian ZHANG1   

  1. 1. General Surgery, Yangzhou No.1 People's Hospital, the Second Clinical Medical College, Yangzhou 225002, China
  • Received:2013-05-19 Published:2013-10-01
引用本文:

王超臣, 张培建. 线粒体自噬在肝相关疾病中的作用[J/OL]. 中华普通外科学文献(电子版), 2013, 07(05): 397-399.

Chao-chen WANG, Pei-jian ZHANG. Targeting mitophagy for the treatment of liver diseases[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2013, 07(05): 397-399.

细胞自噬是细胞依赖溶酶体的分解代谢过程,能降解受损蛋白、衰老或损伤的细胞器等细胞结构,来维持细胞内稳态。众所周知,线粒体调节异常是许多疾病的发病机制。本文主要探讨线粒体自噬在肝相关疾病如非酒精性脂肪肝病、肝癌和肝缺血再灌注损伤中的作用。

Autophagy is a lysosomal degradation pathway that can degrade bulk cytoplasm and superfluous or damaged organelles, such as mitochondria, to maintain cellular homeostasis. It is known that dysregulation of mitochondrial autophagy can cause pathogenesis of numerous human diseases. Here, we discuss the critical roles that mitochondrial autophagy plays in the pathogenesis of liver diseases such as non-alcoholic and alcoholic fatty liver, liver cancer, and hepatic ischemia reperfusion injury.

1
Ni HM, Williams JA, Yang H, et al. Targeting autophagy for the treatment of liver diseases. Pharmacol Res, 2012, 66(6): 463-474.
2
Oczypok EA, Oury TD, Chu CT. It's a cell-eat-cell world: autophagy and phagocytosis. Am J Pathol, 2013, 182(3): 612-622.
3
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress,mitochondrial dysfunction, and aging. Rejuvenation Res, 2005, 8(1): 3-5.
4
谢洪,李艳君,陈英玉. 线粒体自噬. 中国生物化学与分子生物学报, 2011, 27(12): 1081-1087.
5
Ding WX. Role of autophagy in liver physiology and pathophysiology. World J Biol Chem, 2010, 1(1): 3-12.
6
Yin XM, Ding WX, Gao W. Autophagy in the liver. Hepatology, 2008, 47(5): 1773-1785.
7
Yokoyama T, Banta S, Berthiaume F, et al. Evolution of intrahepatic carbon, nitrogen, and energy metabolism in a D-galactosamine-induced rat liver failure model. Metab Eng, 2005, 7(2): 88-103.
8
Shi M, Zhang T, Sun L, et al. Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis, 2013, 18(4): 435-451.
9
Neuschwander-Tetri, Brent A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology, 2010, 52(2): 774-788.
10
Malhi Harmeet, Gores Gregory J. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Seminars in Liver Disease, 2008, 28(4): 360-369.
11
Singh Rajat, Kaushik Susmita, Wang Yongjun, et al. Autophagy regulates lipid metabolism. Nature, 2009, 458(7242): 1131-1135.
12
Mei S, Ni HM, Manley S, et al. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther, 2011, 339(2): 487-498.
13
Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet, 2012, 379(9822): 1245-1255.
14
Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology, 2011, 53(3): 1020-1022.
15
Aita VM, Liang XH, Murty VVVS, et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 1999, 59(1): 59-65.
16
Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003, 112(12): 1809-1820.
17
郭晓蓥,李应东. 细胞自噬对肿瘤发展影响的研究进展[J/CD]. 中华临床医师杂志:电子版, 2012, 6(8): 2161-2162.
18
Sun Q, Gao W, Loughran P, et al. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress. J Biol Chem, 2013, 288(22): 15947-15958.
19
赵金香,李耀华. 自噬在缺血再灌注中的作用. 现代生物医学进展, 2013,13(4): 798-800.
20
Ben Mosbah I, Mouchel Y, Pajaud J, et al. Pretreatment with mangafodipir improves liver graft tolerance to ischemia/reperfusion injury in rat. PLoS One, 2012, 7(11): e50235.
[1] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[2] 高金红, 陈玉梅, 郭韵. 基于King互动达标理论的心理疏导在腹腔镜肝癌切除术患者的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 517-520.
[3] 林巧, 周丽. RFA联合LAH术治疗原发性肝癌并门静脉癌栓的临床效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 521-524.
[4] 曾繁利, 齐秩凯, 杨贺庆. 两种经Glisson蒂鞘解剖路径肝切除术治疗原发性肝癌的肿瘤学疗效及风险比对[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 525-527.
[5] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[6] 胡宁宁, 赵延荣, 王栋, 王胜亮, 郭源. FMNL3与肝细胞癌肝移植受者预后的相关性研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 283-288.
[7] 王飞, 陈政, 余德才, 曹亚娟. 原发性肝癌合并门静脉高压症的微创手术治疗[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 306-310.
[8] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[9] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 广东省护士协会介入护士分会, 广东省医师协会介入医师分会. 原发性肝癌低血糖患者护理规范管理专家共识[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 709-714.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?