切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2017, Vol. 11 ›› Issue (01) : 18 -22. doi: 10.3877/cma.j.issn.1674-0793.2017.01.005

所属专题: 文献

论著

乳腺癌BALB/c小鼠生物发光活体成像和小动物18F-FDG PET/CT成像的比较研究
苏乔1,(), 林颖2, 李雯雯1, 钱学珂2, 李武国1, 赵广银1, 杜颖1   
  1. 1. 510080 广州,中山大学附属第一医院动物实验中心
    2. 510080 广州,中山大学附属第一医院甲状腺乳腺外科
  • 收稿日期:2016-06-14 出版日期:2017-02-01
  • 通信作者: 苏乔
  • 基金资助:
    广东省科技计划资助项目(2013B060300005、2014A030304016)

Comparison between bioluminescent imaging and small-animal 18F-FDG PET/CT in BALB/c mice with breast cancer

Qiao Su1,(), Ying Lin2, Wenwen Li1, Xueke Qian2, Wuguo Li1, Guangyin Zhao1, Ying Du1   

  1. 1. Laboratory Animal Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
    2. Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2016-06-14 Published:2017-02-01
  • Corresponding author: Qiao Su
  • About author:
    Corresponding author: Su Qiao, Email:
引用本文:

苏乔, 林颖, 李雯雯, 钱学珂, 李武国, 赵广银, 杜颖. 乳腺癌BALB/c小鼠生物发光活体成像和小动物18F-FDG PET/CT成像的比较研究[J]. 中华普通外科学文献(电子版), 2017, 11(01): 18-22.

Qiao Su, Ying Lin, Wenwen Li, Xueke Qian, Wuguo Li, Guangyin Zhao, Ying Du. Comparison between bioluminescent imaging and small-animal 18F-FDG PET/CT in BALB/c mice with breast cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2017, 11(01): 18-22.

目的

比较生物发光和小动物PET/CT成像技术在BALB/c小鼠乳腺癌原位移植模型中的显像效果,寻找适合的评价乳腺癌肿瘤模型的分子影像学方法。

方法

将表达荧光素酶基因的乳腺癌细胞4T1接种于雌性BALB/c小鼠左侧第二对乳房垫下使其成瘤,活体荧光成像和小动物PET/CT成像观察肿瘤的生长情况。18F-FDG PET/CT显像利用IRW软件对图像进行分析,采用感兴趣区技术(ROI)测量组织18F-FDG摄取值。

结果

生物发光活体成像操作步骤相对较简单;活体荧光成像系统观察能够特异性地探测到肿瘤组织,小动物PET/CT影像观察发现小鼠体内多数器官组织都有18F-FDG摄取,但肿瘤组织在所有组织、器官中18F-FDG摄取值最高;18F-FDG药物吸收时间30~60 min,有放射性,荧光素钾盐药物吸收时间3~5 min,无放射性;小动物PET/CT成像用时20 min,生物发光活体成像用时3 min;小动物PET/CT分辨率<1 mm,生物发光活体成像分辨率1~10 mm;小动物PET/CT呈三维成像,生物发光活体成像呈二维成像。

结论

生物发光活体成像比18F-FDG PET/CT特异性好,操作简单,图像采集时间短,价钱便宜,无放射性,可检测细胞存活状态,但小动物PET/CT分辨率较高,可精准定位,图像三维立体,可监测到细胞的代谢能力,为以后实验研究中正确选择活体影像学监测手段提供依据。

Objective

To compare the effect of bioluminescent imaging and small animal PET/CT imaging technology in breast cancer mouse model, and to find a suitable molecular imaging method for the evaluation of breast cancer model.

Methods

Luc expressing 4T1 cell was inoculated into the second mammary fat pad on the left side of normal BALB/c mice to establish the tumor models, and then tumor growth was assessed by bioluminescent imaging and small animal PET/CT. PET/CT images were analyzed through IRW (Inveon Research Workplace) to find out region-of-interest.

Results

The procedure of bioluminescent imaging was relatively simpler than small-animal PET/CT. The tumors could be detected by bioluminescent imaging in a short time, and there was high uptake of 18F-FDG in the tumor with small-animal PET/CT. 18F-FDG absorption time was 30-60 min with radiation, and fluorescein potassium salt absorption time was 3-5 min without radiation. Small-animal PET/CT imaging costed 20 min, but bioluminescent imaging just needed 3 min. Resolution of small-animal PET/CT and bioluminescent imaging was <1 mm and 1-10 mm respectively. PET/CT was a 3D imaging, while the bioluminescent imaging was 2D imaging.

Conclusions

Bioluminescent imaging is better in specificity, simplicity in operation, shorter image acquisition time, cheaper, without radioaction, and can detect cell survival state. Small animal PET/CThas the advantage of high resolution, accurate location, three-dimensional image and cell metabolism monitoring.

图3 4T1乳腺癌小鼠模型18F-FDG PET显像 A、B、C分别为荷瘤小鼠横截面、冠状面、矢状面;D、E、F分别为空白对照小鼠的横截面、冠状面、矢状面;箭头示肿瘤位置
表1 18F-FDG小动物PET/CT与生物发光活体成像的比较
图4 Luc标记的4T1体内肿瘤生长曲线
图5 Luc标记4T1乳腺癌病理组织学观察(苏木精-伊红染色, × 200)
[1]
Siegel RL,Miller KD,Jemal A. Cancer Statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1): 5-29.
[2]
Desantis C E,Fedewa S A,Goding Sauer A, et al. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women[J]. CA Cancer J Clin, 2016, 66(1): 31-42.
[3]
陈万青,张思维,郑荣寿, 等. 中国2009年恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2013, 22:(1): 1-12
[4]
李雯雯,赵广银,张兆, 等. 18F-FDG PET/CT成像观察西妥昔单抗对结直肠癌裸鼠移植肿瘤影响的实验研究[J/CD]. 中华普通外科学文献(电子版), 2015, 9(3): 188-192.
[5]
Salem ML,Shoukry NM,Teleb WK, et al. In vitro and in vivo antitumor effects of the Egyptian scorpion Androctonus amoreuxi venom in an Ehrlich ascites tumor model[J]. Springerplus, 2016, 5: 570.
[6]
Vantaggiato C,Dell’Omo G,Ramachandran B, et al. Bioluminescence imaging of estrogen receptor activity during breast cancer progression[J]. Am J Nucl Med Mol Imaging, 2016, 6(1): 32-41.
[7]
Liao D,Luo Y,Markowitz D, et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model[J]. PLoS One, 2009, 4(11): e7965.
[8]
Tao K,Fang M,Alroy J, et al. Imagable 4T1 model for the study of late stage breast cancer[J]. BMC Cancer,2008, 8(228): 1-20.
[9]
严丽,李莉,郝芳, 等. BALB/c小鼠乳腺癌4T1细胞株移植模型的建立[J]. 中国免疫学杂志, 2014, 30(6): 794-796.
[10]
沈国栋,赵婷,张安莉, 等. ErbB2高表达的人乳腺癌原位移植瘤裸鼠模型的建立[J]. 中国药理学通报, 2010, 26(10): 1391-1394.
[11]
O'Neill K,Lyons SK,Gallagher WM, et al. Bioluminescent imaging: a critical tool in pre-clinical oncology research[J]. J Pathol, 2010, 220(3): 317-327.
[12]
Kim JB,Urban K,Cochran E, et al. Non-invasive detection of a small number of bioluminescent cancer cells in vivo[J]. Plos One, 2010, 5(2): e9364
[13]
Sekiguchi Y,Owada J,Oishi H, et al. Noninvasive monitoring of β-cell mass and fetal β-cell genesis in mice using bioluminescence imaging[J]. Exp Anim, 2012, 61(4): 445-451.
[14]
Kai T,Min F,Joseph A, et al. Imagable 4T1 model for the study of late stage breast cancer[J]. BMC Cancer, 2008, 8: 228-247.
[15]
李小颖,高凯,董伟, 等. 荧光素酶标的人肝癌细胞裸鼠异种移植瘤模型的生物发光成像和PET-CT成像比较[J]. 中国比较医学杂志, 2011, 21(3): 10-13.
[16]
胡均松,吴宁,周丽娜, 等. 小动物PET/CT活体成像时小鼠体温控制系统的设计[J]. 中国医学影像学杂志, 2014, 22(6): 476-480.
[17]
李小颖,马元武,张连峰. 三株荧光素酶标记的小鼠乳腺癌细胞在小鼠体内生长及转移的比较[J]. 中国比较医学杂志, 2013, 23(4): 1-4, 79-80.
[18]
Deroose CM,De A,Loening AM, et al. Multimodality imaging of tumor xenografts and metastases in mice with combined small animal PET,small-animal CT and bioluminescence imaging[J]. J Nucl Med, 2007, 48(2) : 295-303.
[19]
赵倩,李娟,王荣福. PET/MRI显像技术与其他分子影像技术的比较[J]. 中国医学装备, 2013, 10(1): 4-7.
[20]
何思敏,罗健民,张建平, 等. 18F-FES小动物PET/CT评价不同乳腺癌模型雌激素受体表达的差异[J]. 肿瘤影像学, 2015, 24(1): 35-40.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[14] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[15] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
阅读次数
全文


摘要