切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 349 -354. doi: 10.3877/cma.j.issn.1674-0793.2020.05.007

所属专题: 文献

论著

结直肠癌奥沙利铂耐药关键基因的生物信息学分析及意义
徐建波1,(), 周星宇1, 谢琴琴2, 欧信德1, 叶锦宁1, 彭建军1, 吴晖1   
  1. 1. 510080 广州,中山大学附属第一医院胃肠外科中心
    2. 510080 广州,中山大学护理学院
  • 收稿日期:2020-06-05 出版日期:2020-10-01
  • 通信作者: 徐建波
  • 基金资助:
    国家自然科学基金资助项目(81672343,81871915); 广东省自然科学基金资助项目(2015A030313053,2017A030313570); 广州市科学技术计划项目(201607010050)

Bioinformatics analysis and significance of key genes for oxaliplatin resistance in colorectal cancer

Jianbo Xu1,(), Xingyu Zhou1, Qinqin Xie2, Xinde Ou1, Jinning Ye1, Jianjun Peng1, Hui Wu1   

  1. 1. Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
    2. School of Nursing, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2020-06-05 Published:2020-10-01
  • Corresponding author: Jianbo Xu
  • About author:
    Corresponding author: Xu Jianbo, Email:
引用本文:

徐建波, 周星宇, 谢琴琴, 欧信德, 叶锦宁, 彭建军, 吴晖. 结直肠癌奥沙利铂耐药关键基因的生物信息学分析及意义[J]. 中华普通外科学文献(电子版), 2020, 14(05): 349-354.

Jianbo Xu, Xingyu Zhou, Qinqin Xie, Xinde Ou, Jinning Ye, Jianjun Peng, Hui Wu. Bioinformatics analysis and significance of key genes for oxaliplatin resistance in colorectal cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2020, 14(05): 349-354.

目的

筛选与结直肠癌(CRC)中奥沙利铂(OXA)耐药性相关的基因和通路。

方法

首先通过GEO数据库分析GSE76092的基因表达谱,筛选出CRC的OXA敏感和OXA耐药细胞系之间的差异表达基因(DEGs)。利用DAVID数据库进行基因本体论(Go)分析和京都基因和基因组百科全书(KEGG)通路分析。通过STRING工具构建蛋白质-蛋白质相互作用(PPI)网络。经MCODE插件选择关键基因,并利用GEPIA工具进行生存分析。最后使用miRWalk数据库预测相关的miRNA。

结果

通过数据分析总共获得474个DEGs,并筛选了相关的信号通路和PPI网络。筛选出15个中心基因,其中7个显著参与NF-κB和趋化因子信号等通路。对7个关键基因的生存分析表明,CXCL8、IL-1β和PTGS2表达水平与CRC患者的总体生存相关。预测hsa-miR-6893-5p、hsa-miR-7851-3p和hsa-miR-96-3p是OXA耐药相关核心miRNA。

结论

基于生物信息学筛选出来的OXA耐药关键基因和信号通路,为CRC中OXA耐药的潜在机制提供更深入的了解。

Objective

To identify the gene signatures and pathways associated with oxaliplatin (OXA) resistance in colorectal cancer (CRC).

Methods

The gene expression profile of GSE76092 was analyzed from the Gene Expression Omnibus (GEO) database. Via GEO2R tool, differentially expressed genes (DEGs) between OXA-sensitive and OXA-resistant cell lines of CRC were sorted. Then the DAVID online tool was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway. Next, protein-protein interaction (PPI) networks were constructed by STRING and modified by Cytoscape. The hub genes were selected via MCODE plugin and the survival analysis was performed on the GEPIA. Finally, the miRWalk was used to predict the gene-related miRNAs.

Results

A total of 474 DEGs were obtained. The DEGs-related GO and KEGG pathways were identified and the PPI networks were built. Among them, 15 hub genes were screened out, 7 of which were significantly involved in NF-kappa B signaling pathway and Chemokine signaling pathway. The survival analysis of the 7 key genes indicated that CXCL8, IL-1β and PTGS2 expression levels were associated with overall survival. Finally, hsa-miR-6893-5p, hsa-miR-7851-3p and hsa-miR-96-3p were predicted as the core miRNAs.

Conclusion

On the basis of bioinformatical methods, key genes and pathways in OXA-resistant CRC were identified, which could provide a deeper understanding of underlying mechanisms of OXA resistance in CRC.

图1 差异表达基因的筛选和层次聚类分析 火山图A中包含273个上调基因(log FC> 1,红色)和201个下调基因(log FC < -1,绿色),差异表达基因以log FC=0为对称轴对称分布;热图B中显示前50个上调和下调基因,基因之间表达的相似性较好
表1 474个差异表达基因显著富集的GO和KEGG通路分析(前5)
图2 蛋白质-蛋白质相互作用(PPI)网络和模块化分析PPI网络A由319个节点和666条棱组成;模块B由15个节点和64条棱组成;节点代表基因/蛋白质,而棱代表节点之间的相互作用关系
表2 通过模块化分析选择的中心基因
表3 中心基因显著富集的KEGG通路和GO分析(前5)
图3 GERIA在线工具用于7个关键基因的Kaplan-Meier生存曲线 A~G分别为CXCL8、CXCL1、IL-1β、PLAU、PTGS2、GNAI1和PF4的生存分析,其中CXCL8、IL-1β和PTGS2与患者的总体生存相关性显著(P<0.05)
图4 关键基因相关的miRNA网络及最显著的次级网络 关键基因相关的miRNA网络A由7个mRNA和1 011个miRNA组成;次级网络B由7个mRNA和3个miRNA组成,次级网络前十个节点由Cytohubba插件选择,红色菱形表示mRNA,蓝色椭圆表示miRNA
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
于永扬, 陈海宁, 周总光. 我国结直肠癌的现状、制约瓶颈与反思[J]. 中国普外基础与临床杂志, 2019, 26(8): 897-902.
[3]
国家卫生计生委医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2017年版)[J/CD]. 中华普通外科学文献(电子版), 2018, 12(3): 145-159.
[4]
Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer[J]. J Clin Oncol, 2004, 22(1): 23-30.
[5]
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57.
[6]
Zhuo C, Wu X, Li J, et al. Chemokine (C-X-C motif) ligand 1 is associated with tumor progression and poor prognosis in patients with colorectal cancer[J]. Biosci Rep, 2018, 38(4): BSR20180580.
[7]
Lee YS, Choi I, Ning Y, et al. Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis[J]. Br J Cancer, 2012, 106(11): 1833-1841.
[8]
Ruiz de Porras V, Bystrup S, Martínez-Cardús A, et al. Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway[J]. Sci Rep, 2016, 6: 24675.
[9]
Ning C, Li YY, Wang Y, et al. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis[J]. Mucosal Immunol, 2015, 8(6): 1275-1284.
[10]
Incio J, Liu H, Suboj P, et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy[J]. Cancer Discov, 2016, 6(8): 852-869.
[11]
Lin M, Zhang Z, Gao M, et al. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression[J]. Cancer Manag Res, 2019, 11: 5353-5363.
[12]
Alfano D, Iaccarino I, Stoppelli MP. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels[J]. J Biol Chem, 2006, 281(26): 17758-17767.
[13]
Liu Y, Sun H, Hu M, et al. The role of cyclooxygenase-2 in colorectal carcinogenesis[J]. Clin Colorectal Cancer, 2017, 16(3): 165-172.
[14]
Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer[J]. JAMA, 2009, 302(6): 649-658.
[15]
Li W, Cao Y, Xu J, et al. YAP transcriptionally regulates COX-2 expression and GCCSysm-4 (G-4), a dual YAP/COX-2 inhibitor, overcomes drug resistance in colorectal cancer[J]. J Exp Clin Cancer Res, 2017, 36(1): 144.
[16]
Yao J, Liang LH, Zhang Y, et al. GNAI1 suppresses tumor cell migration and invasion and is post-transcriptionally regulated by mir-320a/c/d in hepatocellular carcinoma[J]. Cancer Biol Med, 2012, 9(4): 234-241.
[17]
Zhan SJ, Liu B, Linghu H. Identifying genes as potential prognostic indicators in patients with serous ovarian cancer resistant to carboplatin using integrated bioinformatics analysis[J]. Oncol Rep, 2018, 39(6): 2653-2663.
[18]
Li ZW, Sun B, Gong T, et al. GNAI1 and GNAI3 reduce Colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2[J]. Gastroenterology, 2019, 156(8): 2297-2312.
[19]
Maione TE, Gray GS, Hunt AJ, et al. Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity[J]. Cancer Res, 1991, 51(8): 2077-2083.
[20]
Zhang Y, Gao J, Wang X, et al. CXCL4 mediates tumor regrowth after chemotherapy by suppression of antitumor immunity[J]. Cancer Biol Ther, 2015, 16(12): 1775-1783.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 代莉, 邓恢伟, 郭华静, 黄芙蓉. 术中持续输注艾司氯胺酮对腹腔镜结直肠癌手术患者术后睡眠质量的影响[J]. 中华普通外科学文献(电子版), 2023, 17(06): 408-412.
[4] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[7] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[8] 常剑, 邱峰, 毛郁琪. 摄食抑制因子-1与腹腔镜结直肠癌根治术后肝转移的关系分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 502-505.
[9] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[10] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[11] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[12] 关旭, 王锡山. 基于外科与免疫视角思考结直肠癌区域淋巴结处理的功与过[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 448-452.
[13] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[14] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[15] 张景旭, 李德舫, 由上可, 张玉田. 贝伐珠单抗与安罗替尼联合奥沙利铂治疗晚期直肠癌的临床疗效[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 289-293.
阅读次数
全文


摘要