切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 349 -354. doi: 10.3877/cma.j.issn.1674-0793.2020.05.007

所属专题: 文献

论著

结直肠癌奥沙利铂耐药关键基因的生物信息学分析及意义
徐建波1,(), 周星宇1, 谢琴琴2, 欧信德1, 叶锦宁1, 彭建军1, 吴晖1   
  1. 1. 510080 广州,中山大学附属第一医院胃肠外科中心
    2. 510080 广州,中山大学护理学院
  • 收稿日期:2020-06-05 出版日期:2020-10-01
  • 通信作者: 徐建波
  • 基金资助:
    国家自然科学基金资助项目(81672343,81871915); 广东省自然科学基金资助项目(2015A030313053,2017A030313570); 广州市科学技术计划项目(201607010050)

Bioinformatics analysis and significance of key genes for oxaliplatin resistance in colorectal cancer

Jianbo Xu1,(), Xingyu Zhou1, Qinqin Xie2, Xinde Ou1, Jinning Ye1, Jianjun Peng1, Hui Wu1   

  1. 1. Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
    2. School of Nursing, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2020-06-05 Published:2020-10-01
  • Corresponding author: Jianbo Xu
  • About author:
    Corresponding author: Xu Jianbo, Email:
引用本文:

徐建波, 周星宇, 谢琴琴, 欧信德, 叶锦宁, 彭建军, 吴晖. 结直肠癌奥沙利铂耐药关键基因的生物信息学分析及意义[J]. 中华普通外科学文献(电子版), 2020, 14(05): 349-354.

Jianbo Xu, Xingyu Zhou, Qinqin Xie, Xinde Ou, Jinning Ye, Jianjun Peng, Hui Wu. Bioinformatics analysis and significance of key genes for oxaliplatin resistance in colorectal cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2020, 14(05): 349-354.

目的

筛选与结直肠癌(CRC)中奥沙利铂(OXA)耐药性相关的基因和通路。

方法

首先通过GEO数据库分析GSE76092的基因表达谱,筛选出CRC的OXA敏感和OXA耐药细胞系之间的差异表达基因(DEGs)。利用DAVID数据库进行基因本体论(Go)分析和京都基因和基因组百科全书(KEGG)通路分析。通过STRING工具构建蛋白质-蛋白质相互作用(PPI)网络。经MCODE插件选择关键基因,并利用GEPIA工具进行生存分析。最后使用miRWalk数据库预测相关的miRNA。

结果

通过数据分析总共获得474个DEGs,并筛选了相关的信号通路和PPI网络。筛选出15个中心基因,其中7个显著参与NF-κB和趋化因子信号等通路。对7个关键基因的生存分析表明,CXCL8、IL-1β和PTGS2表达水平与CRC患者的总体生存相关。预测hsa-miR-6893-5p、hsa-miR-7851-3p和hsa-miR-96-3p是OXA耐药相关核心miRNA。

结论

基于生物信息学筛选出来的OXA耐药关键基因和信号通路,为CRC中OXA耐药的潜在机制提供更深入的了解。

Objective

To identify the gene signatures and pathways associated with oxaliplatin (OXA) resistance in colorectal cancer (CRC).

Methods

The gene expression profile of GSE76092 was analyzed from the Gene Expression Omnibus (GEO) database. Via GEO2R tool, differentially expressed genes (DEGs) between OXA-sensitive and OXA-resistant cell lines of CRC were sorted. Then the DAVID online tool was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway. Next, protein-protein interaction (PPI) networks were constructed by STRING and modified by Cytoscape. The hub genes were selected via MCODE plugin and the survival analysis was performed on the GEPIA. Finally, the miRWalk was used to predict the gene-related miRNAs.

Results

A total of 474 DEGs were obtained. The DEGs-related GO and KEGG pathways were identified and the PPI networks were built. Among them, 15 hub genes were screened out, 7 of which were significantly involved in NF-kappa B signaling pathway and Chemokine signaling pathway. The survival analysis of the 7 key genes indicated that CXCL8, IL-1β and PTGS2 expression levels were associated with overall survival. Finally, hsa-miR-6893-5p, hsa-miR-7851-3p and hsa-miR-96-3p were predicted as the core miRNAs.

Conclusion

On the basis of bioinformatical methods, key genes and pathways in OXA-resistant CRC were identified, which could provide a deeper understanding of underlying mechanisms of OXA resistance in CRC.

图1 差异表达基因的筛选和层次聚类分析 火山图A中包含273个上调基因(log FC> 1,红色)和201个下调基因(log FC < -1,绿色),差异表达基因以log FC=0为对称轴对称分布;热图B中显示前50个上调和下调基因,基因之间表达的相似性较好
表1 474个差异表达基因显著富集的GO和KEGG通路分析(前5)
图2 蛋白质-蛋白质相互作用(PPI)网络和模块化分析PPI网络A由319个节点和666条棱组成;模块B由15个节点和64条棱组成;节点代表基因/蛋白质,而棱代表节点之间的相互作用关系
表2 通过模块化分析选择的中心基因
表3 中心基因显著富集的KEGG通路和GO分析(前5)
图3 GERIA在线工具用于7个关键基因的Kaplan-Meier生存曲线 A~G分别为CXCL8、CXCL1、IL-1β、PLAU、PTGS2、GNAI1和PF4的生存分析,其中CXCL8、IL-1β和PTGS2与患者的总体生存相关性显著(P<0.05)
图4 关键基因相关的miRNA网络及最显著的次级网络 关键基因相关的miRNA网络A由7个mRNA和1 011个miRNA组成;次级网络B由7个mRNA和3个miRNA组成,次级网络前十个节点由Cytohubba插件选择,红色菱形表示mRNA,蓝色椭圆表示miRNA
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2]
于永扬, 陈海宁, 周总光. 我国结直肠癌的现状、制约瓶颈与反思[J]. 中国普外基础与临床杂志, 2019, 26(8): 897-902.
[3]
国家卫生计生委医政医管局, 中华医学会肿瘤学分会. 中国结直肠癌诊疗规范(2017年版)[J/CD]. 中华普通外科学文献(电子版), 2018, 12(3): 145-159.
[4]
Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer[J]. J Clin Oncol, 2004, 22(1): 23-30.
[5]
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57.
[6]
Zhuo C, Wu X, Li J, et al. Chemokine (C-X-C motif) ligand 1 is associated with tumor progression and poor prognosis in patients with colorectal cancer[J]. Biosci Rep, 2018, 38(4): BSR20180580.
[7]
Lee YS, Choi I, Ning Y, et al. Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis[J]. Br J Cancer, 2012, 106(11): 1833-1841.
[8]
Ruiz de Porras V, Bystrup S, Martínez-Cardús A, et al. Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway[J]. Sci Rep, 2016, 6: 24675.
[9]
Ning C, Li YY, Wang Y, et al. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis[J]. Mucosal Immunol, 2015, 8(6): 1275-1284.
[10]
Incio J, Liu H, Suboj P, et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy[J]. Cancer Discov, 2016, 6(8): 852-869.
[11]
Lin M, Zhang Z, Gao M, et al. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression[J]. Cancer Manag Res, 2019, 11: 5353-5363.
[12]
Alfano D, Iaccarino I, Stoppelli MP. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels[J]. J Biol Chem, 2006, 281(26): 17758-17767.
[13]
Liu Y, Sun H, Hu M, et al. The role of cyclooxygenase-2 in colorectal carcinogenesis[J]. Clin Colorectal Cancer, 2017, 16(3): 165-172.
[14]
Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer[J]. JAMA, 2009, 302(6): 649-658.
[15]
Li W, Cao Y, Xu J, et al. YAP transcriptionally regulates COX-2 expression and GCCSysm-4 (G-4), a dual YAP/COX-2 inhibitor, overcomes drug resistance in colorectal cancer[J]. J Exp Clin Cancer Res, 2017, 36(1): 144.
[16]
Yao J, Liang LH, Zhang Y, et al. GNAI1 suppresses tumor cell migration and invasion and is post-transcriptionally regulated by mir-320a/c/d in hepatocellular carcinoma[J]. Cancer Biol Med, 2012, 9(4): 234-241.
[17]
Zhan SJ, Liu B, Linghu H. Identifying genes as potential prognostic indicators in patients with serous ovarian cancer resistant to carboplatin using integrated bioinformatics analysis[J]. Oncol Rep, 2018, 39(6): 2653-2663.
[18]
Li ZW, Sun B, Gong T, et al. GNAI1 and GNAI3 reduce Colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2[J]. Gastroenterology, 2019, 156(8): 2297-2312.
[19]
Maione TE, Gray GS, Hunt AJ, et al. Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity[J]. Cancer Res, 1991, 51(8): 2077-2083.
[20]
Zhang Y, Gao J, Wang X, et al. CXCL4 mediates tumor regrowth after chemotherapy by suppression of antitumor immunity[J]. Cancer Biol Ther, 2015, 16(12): 1775-1783.
[1] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[2] 许杰, 李亚俊, 冯义文. SOX新辅助化疗后腹腔镜胃癌D2根治术与常规根治术治疗进展期胃癌的近期随访比较[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 647-650.
[3] 谢丽春, 欧庆芬, 张秋萍, 叶升. 简化和标准肝脏MRI方案在结直肠癌肝转移患者随访中的临床应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 434-437.
[4] 施烨鑫, 马翔, 鲁明, 夏青城, 王鹏超, 宋青雨, 赵庆洪. 腹腔镜下结直肠肿瘤定位研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 463-466.
[5] 牛斌, 饶兰英, 刘晓晨, 何龙林, 秦培鑫. 基于孟德尔随机化分析胆囊切除与结直肠肛管恶性肿瘤发生的关系[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 313-318.
[6] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[7] 李佳莹, 王旭丹, 梁雪, 张雷, 李佳英. 1990~2021年中国结直肠癌死亡趋势分析[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 274-279.
[8] 戈伟, 陈刚. 纳米炭导航行淋巴示踪在结直肠癌TNM分期中淋巴分期价值的临床研究[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 288-293.
[9] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[10] 李月刚, 关旭, 赵志勋, 权继传, 庄孟, 汤坚强. 结直肠癌NOSES手术的国际研究现状[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 321-328.
[11] 国超凡, 彭琪博, 郑章强, 于向阳. 低位前切除综合征风险预测及治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 335-340.
[12] 杨明, 张金珠, 王锡山. 全国肿瘤登记中心发布的2013年至2022年结直肠癌流行数据趋势解读[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 177-181.
[13] 黄胜辉, 阮浩杨. 降结肠系膜旋转不良合并结直肠癌的腹腔镜手术策略[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 182-188.
[14] 张继新, 谢爽, 王雪莲, 武祖印, 梁延洋, 张春旭. 经鼻插入肠梗阻导管联合NOSES微创治疗梗阻性结直肠癌的研究[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 189-196.
[15] 张金珠, 梅世文, 孙金峰, 胡刚, 邱文龙, 李国利, 汪欣, 王锡山, 汤坚强. 原发结直肠癌超系膜切除术后患者的生存危险因素分析[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 197-204.
阅读次数
全文


摘要