切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 394 -400. doi: 10.3877/cma.j.issn.1674-0793.2020.05.020

所属专题: 专题评论 文献

循证医学

促甲状腺激素受体突变与分化型甲状腺癌相关性的系统评价
笪东祝1, 龙智2, 王倩2, 乔高昂1, 刘俊1,()   
  1. 1. 211166 上海,南京医科大学附属上海市第一人民医院临床医学院;201620 上海市第一人民医院乳腺甲状腺血管外科
    2. 201620 上海市第一人民医院儿内科
  • 收稿日期:2020-03-23 出版日期:2020-10-01
  • 通信作者: 刘俊
  • 基金资助:
    上海市松江区科学技术委员会资助项目(19SJKJGG17)

Correlation between thyroid stimulating hormone receptor mutations and differentiated thyroid cancer: A systematic review

Dongzhu Da1, Zhi Long2, Qian Wang2, Gaoang Qiao1, Jun Liu1,()   

  1. 1. Nanjing Medical University of Shanghai General Hospital, Nanjing 211166, China; Department of Breast-Thyroid-Vascular Surgery, Shanghai General Hospital, Shanghai 201620, China
    2. Department of Pediatrics, Shanghai General Hospital, Shanghai 201620, China
  • Received:2020-03-23 Published:2020-10-01
  • Corresponding author: Jun Liu
  • About author:
    Corresponding author: Liu Jun, Email:
引用本文:

笪东祝, 龙智, 王倩, 乔高昂, 刘俊. 促甲状腺激素受体突变与分化型甲状腺癌相关性的系统评价[J]. 中华普通外科学文献(电子版), 2020, 14(05): 394-400.

Dongzhu Da, Zhi Long, Qian Wang, Gaoang Qiao, Jun Liu. Correlation between thyroid stimulating hormone receptor mutations and differentiated thyroid cancer: A systematic review[J]. Chinese Archives of General Surgery(Electronic Edition), 2020, 14(05): 394-400.

目的

系统评价分化型甲状腺癌(DTC)患者中促甲状腺激素受体(TSHR)基因突变的情况。

方法

检索PubMed、Web of Science、Cochrane Library、中国知网、万方数据库有关对DTC患者进行TSHR基因突变检测的研究,检索时限自建库至2020年4月4日,对纳入文献提取相关数据进行分析,并获得DTC患者TSHR基因突变谱。

结果

共纳入27个研究,包括395个DTC组织样本。TSHR突变频率为10.38%(41/395),其中92.68%(38/41)的突变发生在第10外显子上,M453T发生突变频率最高(6/37,16.22%),其次是F458S(4/37,10.81%)。在描述甲状腺功能状况的50例DTC中,81.82%(18/22)的合并甲状腺功能亢进(甲亢)/亚甲亢患者发生TSHR突变,明显高于甲状腺功能正常者的10.71%(3/28),差异有统计学意义(χ2=25.569,P<0.001)。

结论

DTC中TSHR突变并不罕见,特别是在低TSH水平下更易出现。TSHR突变可能与DTC发生有关,特别是在合并甲亢情况下。

Objective

To systematically evaluate the mutations of thyroid stimulating hormone receptor (TSHR) genes in patients with differentiated thyroid cancer (DTC).

Methods

A computerized literature search was carried out in PubMed, Web of Science, Cochrane Library, CNKI and Wanfang Data to identify all relevant cases of TSHR gene mutations in DTC patients. The search time period was from the establishment of the database to April 4, 2020. The relevant data extracted from the literature were analyzed, and the TSHR gene mutation profile of DTC patients was obtained.

Results

A total of 27 studies were included, including 395 DTC tissue samples. TSHR mutations were found in 10.38% (41/395) of DTC tissue samples, of which 92.68% mutations occurred in exon 10. M453T had the highest mutation frequency (6/37, 16.22%), followed by F458S (4/37, 10.81%). In addition, in 50 cases of DTC describing thyroid function, TSH mutations occurred in 81.82% (18/22) tissue samples with hyperthyroidism/subclinical hyperthyroidism, which was significantly higher than 10.71% (3/28) of normal thyroid function.

Conclusions

TSHR mutations in DTC are not uncommon, especially at low TSH levels. TSHR mutations may be related to the occurrence of DTC, especially DTC with hyperthyroidism.

图1 文献检索及结果流程图
表1 与DTC相关的TSHR突变
作者及年份 外显子测序 肿瘤样本数 平均年龄(岁) 性别(M/F) 肿瘤类型 甲状腺功能 突变频次 突变外显子 突变位点 等位基因频率(%) 氨基酸变化 备注
Cross等2008[5] Exon10 1 29 0/1 PTC 甲亢 1 Exon10 c.1867G>T N/A p.Ala623Ser (A623S) 肺、脑、LN转移
Blackburn等2018[6] N/A 1 12 0/1 FTC 甲亢 1 Exon10 c.1703T>C 25 p.Ile568Thr (I568T) 未转移
Russo等1997[7] Exon1-10 1 60 0/1 岛状癌 甲亢 1 Exon10 c.1896G>C N/A p.Asp633His (D633H) LN和双肺转移
Kocsis-Deak等2020[8] N/A 39 50.6 8/31 PTC N/A 4 Exon10 c.1373T>C 5.91 5.94 7.34 11.16 p.Phe458Ser (F458S) ?
? ? ? ? ? ? ? 2 Exon10 c.1397A>T 5.59 10.94 p.Tyr466Phe (Y466F) ?
? ? ? ? ? ? ? 1 Exon10 c.1864_ 1865insAA 8.42 p.Ile622fs ?
Xu等2019[9] Exon1-10 15 N/A 2/13 PTC N/A 1 Exon10 c.1358T>C N/A p.Met453Thr (M453T) ?
Duan等2019[10] N/A 53 46 16/37 FTC N/A 0 术前2例远处转移
Nicolson等2018[11] Exon1-10 39 55.2 13/26 FTC N/A 1 Exon10 c.1458C>G 33.3 p.Ile486Met (I486M) 随访中肺转移,BRAF-WT
? ? ? ? ? ? ? 1 Exon9 c.842G>A 23.5 p.Ser281Asn (S281N) 未转移BRAF-WT
? ? ? ? ? ? ? 1 Exon10 c.1888A>C 36.7 p.Ile630Leu (I630L) BRAF-WT
? ? ? ? ? ? ? 1 Exon10 c.1358T>C 39.1 p.Met453Thr (M453T) 未转移BRAF-WT
Mon等2018[12] N/A 4 53 0/1 PTC 正常 1 Exon10 c.1915C>T 37 p.Pro639Ser (P639S) BRAF(+)
? ? ? 64 1/0 FTC 甲亢 1 Exon10 c.1702A>T 42.8 p.Ile568Phe (I568F) ?
? ? ? 59 1/0 ? 亚甲亢 1 Exon10 c.1888A>C 45 p.Ile630Leu (I630L) ?
? ? ? 48 1/0 ? 甲亢 1 Exon10 N/A 36.3 p.Phe631Leu (F631L) ?
Jung等2016[13] Exon1-10 13 51 4/9 FTC N/A 0 ?
Pagan等2016[14] N/A 62 N/A N/A 12FTC 50PTC N/A 1 Exon10 c.1358T>C N/A p.Met453Thr (M453T) 突变为FTC
Tong等2015[15] N/A 1 89 0/1 FTC 正常 1 Exon9 c.814C>G N/A p.Leu272Val (L272V) 腰大肌转移灶;BRAF-WT
Campenni等2015[16] Exon1-10 1 36 1/0 PTC 甲亢 0 未转移
Eszlinger等2014[17] Exon9-10 4 16 1/3 PTC 正常 1 Exon10 c.1895C>T N/A p.Thr632Ile (T632I) ?
Nikiforova等2013[18] Exon10 57 N/A N/A PTC N/A 1 Exon10 N/A N/A N/A ?
? ? 36 N/A N/A FTC N/A 4 Exon10 其中之一:c.1893C>A N/A 其中之一p.Phe631Leu (F631L) ?
Ruggeri等2013[19] N/A 1 15 0/1 PTC 甲亢 1 Exon7 c.561T>C 9 p.Ile187Ile (I187I) 同义突变
Lado-Abeal等2010[20] Exon8-10 1 55 0/1 FTC 甲亢 1 Exon10 c.1358T>C N/A p.Met453Thr (M453T) 未转移BRAF-WT
Nishihara等2009[21] Exon9-10 4 48.3 0/4 PTC 甲亢 1 Exon10 c.1358T>C N/A p.Met453Thr (M453T) ?
? ? ? ? ? ? 甲亢 1 Exon10 c.1458C>G N/A p.Ile486Met (I486M) ?
? ? ? ? ? ? 亚甲亢 1 Exon10 c.1899C>A N/A p.Asp633Glu (D633E) ?
Niepomniszcze等2006[22] Exon10 1 64 0/1 FTC 甲亢 1 Exon10 c.1859C>T N/A p.Thr620Ile (T620I) Ki-RAS G12C突变
Gozu等2004[23] 部分Exon10 1 N/A 0/1 PTC 甲亢 1 Exon10 c.1535T>G N/A p.Leu512Arg (L512R) ?
Fuhrer等2003[24] Exon9-10 1 59 1/0 FTC 亚甲亢 1 Exon10 c.1897G>T N/A p.Asp633Tyr (D633Y) H-和K-ras-WT肺转移灶TSHR-WT
? ? 1 ? ? ? ? 1 Exon10 c.18991T>A N/A p.Phe631Ile (F631I) ?
Camacho等2000[25] Exon9-10 1 49 0/1 FTC 甲亢 1 Exon10 c.1456A>T N/A p.Ile486Phe (I486F) ?
Mircescu等2000[26] Exon10 1 11 0/1 PTC 甲亢 1 Exon10 c.1358T>C N/A p.Met453Thr (M453T) ?
Tonacchera等1999[27] Exon9-10 2 N/A N/A 1FTC 1PTC 正常 0 ?
Russo等1999[28] Exon10 1 42 0/1 FTC 亚甲亢 1 Exon10 c.2029C>G N/A p.Leu677Val (L677V) Ras-WT
Cetani等1999[29] Exon9-10 22 41.7 11/11 8FTC 14PTC 正常 0 ?
Esapa等1997[30] 部分Exon10 2 N/A N/A FTC N/A 0 ?
Spambalg等1996[31] Exon10 29 N/A N/A 21FTC 8PTC N/A 1 Exon10 c.1894A>G N/A p.Thr632Ala (T632A) 5例有转移,其中1例有突变突变均FTC
? ? ? ? ? ? ? 1 Exon10 c.1895C>T N/A p.Thr632Ile (T632I) ?
[1]
Fitzmaurice C, Akinyemiju TF, Al Lami FH, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2018, 4(11): 1553-1568.
[2]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[3]
Su A, Zhao W, Wu W, et al. The association of preoperative thyroid-stimulating hormone level and the risk of differentiated thyroid cancer in patients with thyroid nodules: A systematic review and Meta-analysis[J]. Am J Surg, 2020, doi: 10.1016/j.amjsurg.2020.01.009. [Epub ahead of print].
[4]
Lima MJ, Soares V, Koch P, et al. Autonomously hyperfunctioning cystic nodule harbouring thyroid carcinoma - case report and literature review[J]. Int J Surg Case Rep, 2018, 42: 287-289.
[5]
Cross GA, Suarez H, Pitoia F, et al. Fatal outcome of a young woman with papillary thyroid carcinoma and graves’ disease: possible implication of "cross-signalling" mechanism[J]. Arq Bras Endocrinol Metabol, 2008, 52(7): 1194-1200.
[6]
Blackburn J, Giri D, Ciolka B, et al. A rare case of heterozygous gain of function thyrotropin receptor mutation associated with development of thyroid follicular carcinoma[J]. Case Rep Genet, 2018, 2018: 1381730.
[7]
Russo D, Tumino S, Arturi F, et al. Detection of an activating mutation of the thyrotropin receptor in a case of an autonomously hyperfunctioning thyroid insular carcinoma[J]. J Clin Endocrinol Metab, 1997, 82(3): 735-738.
[8]
Kocsis-Deak B, Arvai K, Balla B, et al. Targeted mutational profiling and a powerful risk score as additional tools for the diagnosis of papillary thyroid cancer[J]. Pathol Oncol Res, 2020, 26(1): 101-108.
[9]
Xu B, Reznik E, Tuttle R M, et al. Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features[J]. Endocrine, 2019, 64(1): 97-108.
[10]
Duan H, Liu X, Ren X, et al. Mutation profiles of follicular thyroid tumors by targeted sequencing [J]. Diagn Pathol, 2019, 14(1): 39.
[11]
Nicolson NG, Murtha TD, Dong W, et al. Comprehensive genetic analysis of follicular thyroid carcinoma predicts prognosis independent of histology[J]. J Clin Endocrinol Metab, 2018, 103(7): 2640-2650.
[12]
Mon SY, Riedlinger G, Abbott CE, et al. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations[J]. Diagn Cytopathol, 2018, 46(5): 369-377.
[13]
Jung SH, Kim MS, Jung CK, et al. Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma[J]. Oncotarget, 2016, 7(43): 69638-69648.
[14]
Pagan M, Kloos RT, Lin CF, et al. The diagnostic application of RNA sequencing in patients with thyroid cancer: An analysis of 851 variants and 133 fusions in 524 genes[J]. BMC Bioinformatics, 2016, 17 Suppl 1(6): 6.
[15]
Tong GX, Mody K, Wang Z, et al. Mutations of TSHR and TP53 genes in an aggressive clear cell follicular carcinoma of the thyroid[J]. Endocr Pathol, 2015, 26(4): 315-319.
[16]
Campenni A, Giovinazzo S, Curto L, et al. Thyroid hemiagenesis, Graves' disease and differentiated thyroid cancer: A very rare association: case report and review of literature[J]. Hormones (Athens), 2015, 14(3): 451-458.
[17]
Eszlinger M, Niedziela M, Typlt E, et al. Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents[J]. Mol Cell Endocrinol, 2014, 393(1-2): 39-45.
[18]
Nikiforova MN, Wald AI, Roy S, et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer[J]. J Clin Endocrinol Metab, 2013, 98(11): E1852-1860.
[19]
Ruggeri RM, Campenni A, Giovinazzo S, et al. Follicular variant of papillary thyroid carcinoma presenting as toxic nodule in an adolescent: coexistent polymorphism of the TSHR and Gsalpha genes [J]. Thyroid, 2013, 23(2): 239-242.
[20]
Lado-Abeal J, Celestino R, Bravo SB, et al. Identification of a paired box gene 8-peroxisome proliferator-activated receptor gamma (PAX8-PPARgamma) rearrangement mosaicism in a patient with an autonomous functioning follicular thyroid carcinoma bearing an activating mutation in the TSH receptor[J]. Endocr Relat Cancer, 2010, 17(3): 599-610.
[21]
Nishihara E, Amino N, Maekawa K, et al. Prevalence of TSH receptor and Gsalpha mutations in 45 autonomously functioning thyroid nodules in Japan[J]. Endocr J, 2009, 56(6): 791-798.
[22]
Niepomniszcze H, Suarez H, Pitoia F, et al. Follicular carcinoma presenting as autonomous functioning thyroid nodule and containing an activating mutation of the TSH receptor (T620I) and a mutation of the Ki-RAS (G12C) genes[J]. Thyroid, 2006, 16(5): 497-503.
[23]
Gozu H, Avsar M, Bircan R, et al. Does a Leu 512 Arg thyrotropin receptor mutation cause an autonomously functioning papillary carcinoma? [J]. Thyroid, 2004, 14(11): 975-980.
[24]
Fuhrer D, Tannapfel A, Sabri O, et al. Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases[J]. Endocr Relat Cancer, 2003, 10(4): 591-600.
[25]
Camacho P, Gordon D, Chiefari E, et al. A Phe 486 thyrotropin receptor mutation in an autonomously functioning follicular carcinoma that was causing hyperthyroidism[J]. Thyroid, 2000, 10(11): 1009-1012.
[26]
Mircescu H, Parma J, Huot C, et al. Hyperfunctioning malignant thyroid nodule in an 11-year-old girl: pathologic and molecular studies[J]. J Pediatr, 2000, 137(4): 585-587.
[27]
Tonacchera M, Vitti P, Agretti P, et al. Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms[J]. J Clin Endocrinol Metab, 1999, 84(11): 4155-4158.
[28]
Russo D, Wong MG, Costante G, et al. A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis[J]. Thyroid, 1999, 9(1): 13-17.
[29]
Cetani F, Tonacchera M, Pinchera A, et al. Genetic analysis of the TSH receptor gene in differentiated human thyroid carcinomas[J].J Endocrinol Invest, 1999, 22(4): 273-278.
[30]
Esapa C, Foster S, Johnson S, et al. G protein and thyrotropin receptor mutations in thyroid neoplasia[J]. J Clin Endocrinol Metab, 1997, 82(2): 493-496.
[31]
Spambalg D, Sharifi N, Elisei R, et al. Structural studies of the thyrotropin receptor and Gs alpha in human thyroid cancers: low prevalence of mutations predicts infrequent involvement in malignant transformation[J]. J Clin Endocrinol Metab, 1996, 81(11): 3898-3901.
[32]
Parmentier M, Libert F, Maenhaut C, et al. Molecular cloning of the thyrotropin receptor[J]. Science, 1989, 246(4937): 1620-1622.
[33]
Rapoport B, Chazenbalk GD, Jaume JC, et al. The Thyrotropin (TSH)-releasing hormone receptor: interaction with TSH and autoantibodies 1[J]. Endocrine Reviews, 1998, 19(6): 673-716.
[34]
Tuncel M. Thyroid stimulating hormone receptor[J]. Mol Imaging Radionucl Ther, 2017, 26(Suppl 1): 87-91.
[35]
Kleinau G, Biebermann H. Constitutive activities in the thyrotropin receptor: regulation and significance[J]. Adv Pharmacol, 2014, 70: 81-119.
[36]
Russo D, Arturi F, Wicker R, et al. Genetic alterations in thyroid hyperfunctioning adenomas[J]. J Clin Endocrinol Metab, 1995, 80(4): 1347-1351.
[37]
Parma J, Duprez L, Van Sande J, et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha genes as a cause of toxic thyroid adenomas[J]. J Clin Endocrinol Metab, 1997, 82(8): 2695-2701.
[38]
Krohn K, Fuhrer D, Bayer Y, et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter[J]. Endocr Rev, 2005, 26(4): 504-524.
[39]
Jaeschke H, Undeutsch H, Patyra K, et al. Hyperthyroidism and papillary thyroid carcinoma in thyrotropin receptor D633H mutant mice[J]. Thyroid, 2018, 28(10): 1372-1386.
[40]
Staniforth JU, Erdirimanne S, Eslick GD. Thyroid carcinoma in Graves' disease: A Meta-analysis[J]. Int J Surg, 2016, 27: 118-125.
[41]
Yeh NC, Chou CW, Weng SF, et al. Hyperthyroidism and thyroid cancer risk: A population-based cohort study[J]. Exp Clin Endocrinol Diabetes, 2013, 121(7): 402-406.
[42]
Liu J, Wang Y, Da D, et al. Hyperfunctioning thyroid carcinoma: A systematic review[J]. Mol Clin Oncol, 2019, 11(6): 535-550.
[43]
Gelwane G, de Roux N, Chevenne D, et al. Pituitary-thyroid feedback in a patient with a sporadic activating thyrotropin (TSH) receptor mutation: implication that thyroid-secreted factors other than thyroid hormones contribute to serum TSH levels[J]. J Clin Endocrinol Metab, 2009, 94(8): 2787-2791.
[1] 庞嘉越成, 巨淑慧, 马冀青, 李恒宇, 盛湲. 乳腺癌易感基因突变人群接受降低乳腺癌风险手术的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 179-183.
[2] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[3] 阚路兰, 田茂强, 唐一蜜. 以腹痛为首发症状的轻型Gitelman综合征患儿1例及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 473-479.
[4] 张小曼, 马筱秋, 许正锯, 张纯瑜, 何彩婷. 乙型肝炎病毒逆转录酶区耐药突变对血清乙型肝炎病毒表面抗原水平的影响[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 324-332.
[5] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[6] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[7] 崔占斌, 乔军利, 张丽丽, 韩明强. 尿碘水平与甲状腺乳头状癌患者术后复发危险度分层的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 615-618.
[8] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[9] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[10] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[11] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[12] 徐成, 王璐璐, 王少华. 洗脱液甲状腺球蛋白在甲状腺乳头状癌转移淋巴结中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 701-704.
[13] 汪毅, 许思哲, 任章霞. 胸乳入路腔镜单侧甲状腺叶切除术与开放手术对分化型甲状腺癌患者术后恢复的影响[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 542-545.
[14] 张蓉, 秦洪真, 杨晓冬, 刘爽, 刘明锋, 曹秀堂. 分化型甲状腺癌术后康复锻炼的临床应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 439-442.
[15] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
阅读次数
全文


摘要