[1] |
Bray F, Laversanne M, Sung H, et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2024, 74(3): 229-263.
|
[2] |
Arnold M, Park JY, Camargo MC, et al.Is gastric cancer becoming a rare disease? A global assessment of predicted incidence trends to 2035[J].Gut, 2020, 69(5): 823-829.
|
[3] |
Meng C, Bai C, Brown TD, et al.Human gut microbiota and gastrointestinal cancer[J].Genomics Proteomics Bioinformatics,2018, 16(1): 33-49.
|
[4] |
Bessède E, Mégraud F.Microbiota and gastric cancer[J].Semin Cancer Biol, 2022, 86(Pt 3): 11-17.
|
[5] |
Zeng R, Gou H, Lau HCH, et al.Stomach microbiota in gastric cancer development and clinical implications[J].Gut, 2024, 73(12):2062-2073.
|
[6] |
Fu K, Cheung AHK, Wong CC, et al.Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice[J].Cell, 2024, 187(4): 882-896, e17.
|
[7] |
Liu X, Tong X, Zou Y, et al.Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome[J].Nat Genet, 2022, 54(1): 52-61.
|
[8] |
Wang Z, Peters BA, Yu B, et al.Gut microbiota and blood metabolites related to fiber intake and type 2 diabetes[J].Circ Res,2024, 134(7): 842-854.
|
[9] |
Wang Q, Dai H, Hou T, et al.Dissecting causal relationships between gut microbiota, blood metabolites, and stroke: A mendelian randomization study[J].J Stroke, 2023, 25(3): 350-360.
|
[10] |
Emdin CA, Khera AV, Kathiresan S.Mendelian randomization[J].JAMA, 2017, 318(19): 1925-1926.
|
[11] |
Hemani G, Zheng J, Elsworth B, et al.The MR-base platform supports systematic causal inference across the human phenome[J].eLife, 2018, 7: e34408.
|
[12] |
Sanna S, van Zuydam NR, Mahajan A, et al.Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases[J].Nat Genet, 2019, 51(4): 600-605.
|
[13] |
Chen CY, Pollack S, Hunter DJ, et al.Improved ancestry inference using weights from external reference panels[J].Bioinformatics,2013, 29(11): 1399-1406.
|
[14] |
Levin MG, Judy R, Gill D, et al.Genetics of height and risk of atrial fibrillation: A mendelian randomization study[J].PLoS Med,2020, 17(10): e1003288.
|
[15] |
Giraud MF, Naismith JH.The rhamnose pathway[J].Curr Opin Struct Biol, 2000, 10(6): 687-696.
|
[16] |
McCallum N, Najlah M.The anticancer activity of monosaccharides: perspectives and outlooks[J].Cancers, 2024,16(16): 2775.
|
[17] |
Tomšík P, Stoklasová A, Mičuda S, et al.Evaluation of the antineoplastic activity of L-rhamnose in vitro.A comparison with 2-deoxyglucose[J].Acta Medica (Hradec Kralove), 2017, 51(2):113-119.
|
[18] |
Tomsik P, Soukup T, Cermakova E, et al.L-rhamnose and L-fucose suppress cancer growth in mice[J].Open Life Sci, 2011, 6(1): 1-9.
|
[19] |
Li X, Rao X, Cai L, et al.Targeting tumor cells by natural anti-carbohydrate antibodies using rhamnose-functionalized liposomes[J].ACS Chem Biol, 2016, 11(5): 1205-1209.
|
[20] |
Bednarz-Misa I, Fleszar MG, Fortuna P, et al.Altered L-arginine metabolic pathways in gastric cancer: potential therapeutic targets and biomarkers[J].Biomolecules, 2021, 11(8): 1086.
|
[21] |
Nanthakumaran S, Brown I, Heys SD, et al.Inhibition of gastric cancer cell growth by arginine: molecular mechanisms of action[J].Clin Nutr, 2009, 28(1): 65-70.
|
[22] |
Wang F, Pang R, Zhao X, et al.Plasma metabolomics and lipidomics reveal potential novel biomarkers in early gastric cancer: An explorative study[J].Int J Biol Markers, 2024, 39(3):226-238.
|
[23] |
He Y, Cai P, Hu A, et al.The role of 1 400 plasma metabolites in gastric cancer: A bidirectional mendelian randomization study and metabolic pathway analysis[J].Medicine, 2024, 103(48): e40612.
|
[24] |
Shi LY, Wang YY, Jing Y, et al.Abnormal arginine metabolism is associated with prognosis in patients of gastric cancer[J].Transl Cancer Res, 2021, 10(5): 2451-2469.
|
[25] |
Hong L, Tang X, Han J, et al.Abnormal arginine synthesis confers worse prognosis in patients with middle third gastric cancer[J].Cancer Cell Int, 2024, 24(1): 6.
|
[26] |
Patra KC, Hay N.The pentose phosphate pathway and cancer[J].Trends Biochem Sci, 2014, 39(8): 347-354.
|
[27] |
Uhlén M, Fagerberg L, Hallström BM, et al.Proteomics.Tissuebased map of the human proteome[J].Science, 2015, 347(6220):1260419.
|
[28] |
Wu CW, Wang SR, Chien SL, et al.Regulation of arginase production by glucocorticoid in three human gastric cancer cell lines[J].Life Sci, 1992, 51(17): 1355-1361.
|
[29] |
Koşan B, Yüksel O, Ustün I, et al.Role of endogenous cortisol on helicobacter pylori colonization[J].Clin Biochem, 2008, 41(10-11):917-919.
|
[30] |
Zhang J, Ke Y, Ning T.glucocorticoid-induced apoptosis of human gastric epithelial cells transfected with p53 genes[J].Zhonghua Zhong Liu Za Zhi, 1996, 18(5): 328-330.
|
[31] |
Chen A, Li J, Shen N, et al.Vitamin K: new insights related to senescence and cancer metastasis[J].Biochim Biophys Acta Rev Cancer, 2024, 1879(2): 189057.
|
[32] |
Wei G, Wang M, Carr BI.Sorafenib combined vitamin K induces apoptosis in human pancreatic cancer cell lines through RAF/MEK/ERK and c-jun NH2-terminal kinase pathways[J].J Cell Physiol, 2010, 224(1): 112-119.
|
[33] |
Tokita H, Tsuchida A, Miyazawa K, et al.Vitamin K2-induced antitumor effects via cell-cycle arrest and apoptosis in gastric cancer cell lines[J].Int J Mol Med, 2006, 17(2): 235-243.
|
[34] |
Ribeiro HF, Sant’ Anna C de C, Kato V de JO, et al.CDC25B inhibition by menadione: A potential new therapeutical approach[J].Anticancer Agents Med Chem, 2022, 22(17): 2927-2932.
|