[1] |
Samuel D, Coilly A. Management of patients with liver diseases on the waiting list for transplantation: A major impact to the success of liver transplantation[J]. BMC Med, 2018, 16(1): 113.
|
[2] |
Prasad Singh N, Nagarkatti M, Nagarkatti P. From suppressor T cells to regulatory T cells: how the journey that began with the discovery of the toxic effects of TCDD led to better understanding of the role of AhR in immunoregulation[J]. Int J Mol Sci, 2020, 21(21): 7849.
|
[3] |
Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor[J]. Nature, 2008, 453(7191): 65-71.
|
[4] |
Campesato LF, Budhu S, Tchaicha J, et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine[J]. Nat Commun, 2020, 11(1): 4011.
|
[5] |
Neavin DR, Liu D, Ray B, et al. The role of the Aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases[J]. Int J Mol Sci, 2018, 19(12).
|
[6] |
Gurczynski SJ, Pereira NL, Hrycaj SM, et al. Stem cell transplantation uncovers TDO-AHR regulation of lung dendritic cells in herpesvirus-induced pathology[J]. JCI Insight, 2021,6(2): e139965.
|
[7] |
Dant TA, Lin KL, Bruce DW, et al. T-cell expression of AhR inhibits the maintenance of pTreg cells in the gastrointestinal tract in acute GVHD[J]. Blood, 2017, 130(3): 348-359.
|
[8] |
Liu Y, Liang X, Dong W, et al. Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation[J]. Cancer Cell, 2018, 33(3): 480-494, e7.
|
[9] |
Ozkaynak E, Wang L, Goodearl A, et al. Programmed death-1 targeting can promote allograft survival[J]. J Immunol, 2002, 169(11): 6546-6553.
|
[10] |
Morita M, Fujino M, Jiang G, et al. PD-1/B7-H1 interaction contribute to the spontaneous acceptance of mouse liver allograft[J]. Am J Transplant, 2010, 10(1): 40-46.
|
[11] |
Fisher J, Zeitouni N, Fan W, et al. Immune checkpoint inhibitor therapy in solid organ transplant recipients: A patient-centered systematic review[J]. J Am Acad Dermatol, 2020, 82(6): 1490-1500.
|
[12] |
Jasperson LK, Bucher C, Panoskaltsis-Mortari A, et al. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality[J]. Blood, 2009, 114(24): 5062-5070.
|
[13] |
Hauben E, Gregori S, Draghici E, et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells[J]. Blood, 2008, 112(4): 1214-1222.
|
[14] |
Cai LJ, Yu DW, Gao Y, et al. Activation of aryl hydrocarbon receptor prolongs survival of fully mismatched cardiac allografts[J]. J Huazhong Univ Sci Technolog Med Sci, 2013, 33(2): 199-204.
|
[15] |
Du X, Chang S, Guo W, et al. Progress in liver transplant tolerance and tolerance-inducing cellular therapies[J]. Front Immunol, 2020, 11: 1326.
|
[16] |
Deng G, Song X, Fujimoto S, et al. Foxp3 post-translational modifications and Treg suppressive activity[J]. Front Immunol, 2019, 10: 2486.
|
[17] |
Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316.
|
[18] |
Wen Q, Zhou L, Chen H, et al. N-(3’, 4’-dimethoxycinnamonyl) anthranilic acid alleviated experimental colitis by inhibiting autoimmune response and inducing CD4+ CD25+ regulatory T cells production[J]. J Gastroenterol Hepatol, 2013, 28(8): 1330-1338.
|
[19] |
Choi EY, Lee H, Dingle RW, et al. Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor[J]. Mol Pharmacol, 2012, 81(1): 3-11.
|