[1] |
Foglia B, Beltrà M, Sutti S, et al. Metabolic reprogramming of HCC: A new microenvironment for immune responses[J]. Int J Mol Sci, 2023, 24(8): 7463.
|
[2] |
Bhat N, Mani A. Dysregulation of lipid and glucose metabolism in nonalcoholic fatty liver disease[J]. Nutrients, 2023, 15(10): 2323.
|
[3] |
Cheng Y, He J, Zuo B, et al. Role of lipid metabolism in hepatocellular carcinoma[J]. Discov Oncol, 2024, 15(1): 206.
|
[4] |
Mooli RGR, Ramakrishnan SK. Liver steatosis is a driving factor of inflammation[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(4):1267-1270.
|
[5] |
Bhat SA, Farooq Z, Ismail H, et al. Unraveling the sweet secrets of HCC: glucometabolic rewiring in hepatocellular carcinoma[J].Technol Cancer Res Treat, 2023, 22: 15330338231219434.
|
[6] |
Feng J, Li J, Wu L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 126.
|
[7] |
Zhang X, Song W, Gao Y, et al. The role of tumor metabolic reprogramming in tumor immunity[J]. Int J Mol Sci, 2023, 24(24):17422.
|
[8] |
Liu Y, Hao C, Li L, et al. The role of oxidative stress in the development and therapeutic intervention of hepatocellular carcinoma[J]. Curr Cancer Drug Targets, 2023, 23(10): 792-804.
|
[9] |
Čipak Gašparović A. Free radical research in cancer[J].Antioxidants (Basel), 2020, 9(2): 157.
|
[10] |
Wang L, Zhang L. Protein kinase N2 reduces hydrogen peroxideinduced damage and apoptosis in PC12 cells by antioxidative stress and activation of the mTOR pathway[J]. Evid Based Complement Alternat Med, 2022, 2022: 2483669.
|
[11] |
Shiau JP, Chuang YT, Tang JY, et al. The impact of oxidative stress and AKT pathway on cancer cell functions and its application to natural products[J]. Antioxidants (Basel), 2022, 11(9): 1845.
|
[12] |
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, et al. Association of methylation signatures at hepatocellular carcinoma pathway genes with adiposity and insulin resistance phenotypes[J]. Nutr Cancer,2019, 71(5): 840-851.
|
[13] |
Zhang YT, Xing ML, Fang HH, et al. Effects of lactate on metabolism and differentiation of CD4(+) T cells[J]. Mol Immunol,2023, 154: 96-107.
|
[14] |
Peng X, He Z, Yuan D, et al. Lactic acid: the culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(5):189164.
|
[15] |
Worsley CM, Veale RB, Mayne ES. The acidic tumour microenvironment: manipulating the immune response to elicit escape[J]. Hum Immunol, 2022, 83(5): 399-408.
|
[16] |
Miao T, Nan Y. Hepatocellular carcinoma immune microenvironment[J]. Zhonghua Gan Zang Bing Za Zhi, 2022,30(9): 923-930.
|
[17] |
Vanderborght B, De Muynck K, Gijbels E, et al. Transient Kupffer cell depletion and subsequent replacement by infiltrating monocyte-derived cells does not alter the induction or progression of hepatocellular carcinoma[J]. Int J Cancer, 2023, 152(12): 2615-2628.
|
[18] |
Manoharan I, Prasad PD, Thangaraju M, et al. Lactatedependent regulation of immune responses by dendritic cells and macrophages[J]. Front Immunol, 2021, 12: 691134.
|
[19] |
Huang J, Wu Q, Geller DA, et al. Macrophage metabolism,phenotype, function, and therapy in hepatocellular carcinoma(HCC)[J]. J Transl Med, 2023, 21(1): 815.
|
[20] |
Thangaraj JL, Coffey M, Lopez E, et al. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells[J]. Cell Stem Cell, 2024, 31(9): 1327-1343, e1325.
|
[21] |
Ge Z, Wu S, Zhang Z, et al. Mechanism of tumor cells escaping from immune surveillance of NK cells[J]. Immunopharmacol Immunotoxicol, 2020, 42(3): 187-198.
|
[22] |
Wang F, Liu L, Wang J, et al. Gain-of-function of IDO in DCs inhibits T cell immunity by metabolically regulating surface molecules and cytokines[J]. Exp Ther Med, 2023, 25(5): 234.
|
[23] |
Chen Z, Yu M, Zhang B, et al. SIGLEC15, negatively correlated with PD-L1 in HCC, could induce CD8+ T cell apoptosis to promote immune evasion[J]. Oncoimmunology, 2024, 13(1):2376264.
|
[24] |
Hou K, Xu X, Ge X, et al. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma[J]. Biofactors, 2024, 50(2): 250-265.
|
[25] |
Jedlička M, Feglarová T, Janstová L, et al. Lactate from the tumor microenvironment - A key obstacle in NK cell-based immunotherapies[J]. Front Immunol, 2022, 13: 932055.
|
[26] |
Sanmarco LM, Rone JM, Polonio CM, et al. Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells[J]. Nature,2023, 620(7975): 881-889.
|
[27] |
Chen IC, Awasthi D, Hsu CL, et al. High-fat diet-induced obesity alters dendritic cell homeostasis by enhancing mitochondrial fatty acid oxidation[J]. J Immunol, 2022, 209(1): 69-76.
|
[28] |
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion[J]. Drug Discov Today, 2024, 29(4): 103940.
|
[29] |
Zhu GQ, Tang Z, Huang R, et al. CD36(+) cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor[J]. Cell Discov, 2023, 9(1): 25.
|
[30] |
Yin Y, Feng W, Chen J, et al. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside[J]. Exp Hematol Oncol, 2024, 13(1): 72.
|
[31] |
Khanam A, Kottilil S. New therapeutics for HCC: does tumor immune microenvironment matter?[J]. Int J Mol Sci, 2022, 24(1):437.
|
[32] |
Hayes C, Donohoe CL, Davern M, et al. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment[J]. Cancer Lett, 2021, 500: 75-86.
|
[33] |
Teng Y, Xu L, Li W, et al. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: A narrative review[J]. Front Immunol, 2023, 14:1224443.
|
[34] |
Arconzo M, Piccinin E, Pasculli E, et al. Hepatic-specific Pgc-1α ablation drives fibrosis in a MASH model[J]. Liver Int, 2024,44(10): 2738-2752.
|
[35] |
Bansal SK, Bansal MB. Pathogenesis of MASLD and MASH - role of insulin resistance and lipotoxicity[J]. Aliment Pharmacol Ther,2024, 59 Suppl 1: S10-S22.
|
[36] |
Mauricio D, Escalada J, Pérez A, et al. Metabolic dysfunctionassociated steatohepatitis (MASLD) and metabolic dysfunctionassociated steatohepatitis (MASH) require urgent attention by primary care physicians and endocrinologists[J]. Endocrinol Diabetes Nutr (Engl Ed), 2024, 71(4): 149-151.
|
[37] |
Tiku V, Kew C, Kofoed EM, et al. Acinetobacter baumannii secretes a bioactive lipid that triggers inflammatory signaling and cell death[J]. Front Microbiol, 2022, 13: 870101.
|
[38] |
Khoury M, Guo Q, Furuta K, et al. Glycogen synthase kinase 3 activity enhances liver inflammation in MASH[J]. JHEP Rep,2024, 6(6): 101073.
|
[39] |
Xu GX, Wei S, Yu C, et al. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions[J]. Front Cell Dev Biol, 2023, 11: 1199519.
|
[40] |
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease[J]. Int Rev Cell Mol Biol,2022, 368: 143-212.
|
[41] |
Highton AJ, Schuster IS, Degli-Esposti MA, et al. The role of natural killer cells in liver inflammation[J]. Semin Immunopathol,2021, 43(4): 519-533.
|
[42] |
Westenberger G, Sellers J, Fernando S, et al. Function of mitogenactivated protein kinases in hepatic inflammation[J]. J Cell Signal,2021, 2(3): 172-180.
|
[43] |
Borde S, Matosevic S. Metabolic adaptation of NK cell activity and behavior in tumors: challenges and therapeutic opportunities[J].Trends Pharmacol Sci, 2023, 44(11): 832-848.
|
[44] |
Zhao M, Yuan H, Yang G, et al. Tumour cell-expressed PDL1 reprograms lipid metabolism via EGFR/ITGB4/SREBP1c signalling in liver cancer[J]. JHEP Rep, 2024, 6(4): 101009.
|
[45] |
Wang H, Tsung A, Mishra L, et al. Regulatory T cell: A doubleedged sword from metabolic-dysfunction-associated steatohepatitis to hepatocellular carcinoma[J]. EBioMedicine, 2024, 101: 105031.
|
[46] |
Singh S, Karthikeyan C, Moorthy N. Recent advances in the development of fatty acid synthase inhibitors as anticancer agents[J]. Mini Rev Med Chem, 2020, 20(18): 1820-1837.
|
[47] |
Wong SK, Beckermann KE, Johnson DB, et al. Combining anticytotoxic T-lymphocyte antigen 4 (CTLA-4) and -programmed cell death protein 1 (PD-1) agents for cancer immunotherapy[J].Expert Opin Biol Ther, 2021, 21(12): 1623-1634.
|
[48] |
Wang L, Cao ZM, Zhang LL, et al. The role of gut microbiota in some liver diseases: from an immunological perspective[J]. Front Immunol, 2022, 13: 923599.
|
[49] |
Xie Y, Liu F. The role of the gut microbiota in tumor, immunity,and immunotherapy[J]. Front Immunol, 2024, 15: 1410928.
|
[50] |
Aderinto N, Abdulbasit MO, Tangmi ADE, et al. Unveiling the growing significance of metabolism in modulating immune cell function: exploring mechanisms and implications; a review[J]. Ann Med Surg (Lond), 2023, 85(11): 5511-5522.
|
[51] |
Li H, He Q, Zhou GM, et al. Potential biomarkers for the prognosis and treatment of HCC immunotherapy[J]. Eur Rev Med Pharmacol Sci, 2023, 27(5): 2027-2046.
|
[52] |
Xu FQ, Dong MM, Wang ZF, et al. Metabolic rearrangements and intratumoral heterogeneity for immune response in hepatocellular carcinoma[J]. Front Immunol, 2023, 14: 1083069.
|
[53] |
Bao M, Wu A. Understanding the heterogeneity in liver hepatocellular carcinoma with a special focus on malignant cell through single-cell analysis[J]. Discov Oncol, 2024, 15(1): 241.
|
[54] |
Yang Y, Sun L, Chen Z, et al. The immune-metabolic crosstalk between CD3(+)C1q(+)TAM and CD8(+)T cells associated with relapse-free survival in HCC[J]. Front Immunol, 2023, 14:1033497.
|