| [1] |
Li J, Cai S, Zhou Y, et al. Efficacy and safety of ripretinib in chinese patients with advanced gastrointestinal stromal tumors as a fourth-or later-line therapy: A multicenter, single-arm, open-label phase Ⅱ study[J]. Clin Cancer Res, 2022, 28(16): 3425–3432.
|
| [2] |
Mühlenberg T, Falkenhorst J, Schulz T, et al. KIT ATP-binding pocket/activation loop mutations in GI stromal tumor: emerging mechanisms of kinase inhibitor escape[J]. J Clin Oncol, 2024, 42(12): 1439–1449.
|
| [3] |
Quattrone A, Wozniak A, Dewaele B, et al. Frequent mono-allelic loss associated with deficient PTEN expression in imatinib-resistant gastrointestinal stromal tumors[J]. Mod Pathol, 2014, 27(11): 1510–1520.
|
| [4] |
Lasota J, Felisiak-Golabek A, Wasag B, et al. Frequency and clinicopathologic profile of PIK3CA mutant GISTs: molecular genetic study of 529 cases[J]. Mod Pathol, 2016, 29(3): 275–282.
|
| [5] |
Lu X, Pang Y, Cao H, et al. Integrated screens identify CDK1 as a therapeutic target in advanced gastrointestinal stromal tumors[J]. Cancer Res, 2021, 81(9): 2481–2494.
|
| [6] |
Agaram NP, Wong GC, Guo T, et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors[J]. Genes Chromosomes Cancer, 2008, 47(10): 853–859.
|
| [7] |
Miranda C, Nucifora M, Molinari F, et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors[J]. Clin Cancer Res, 2012, 18(6): 1769–1776.
|
| [8] |
Zheng S, Huang KE, Pan YL, et al. KIT and BRAF heterogeneous mutations in gastrointestinal stromal tumors after secondary imatinib resistance[J]. Gastric Cancer, 2015, 18(4): 796–802.
|
| [9] |
Chen Q, Li R, Zhang ZG, et al. Oncogene mutational analysis in Chinese gastrointestinal stromal tumor patients[J]. Onco Targets Ther, 2018, 11: 2279–2286.
|
| [10] |
Zhang L, Zhang S, Cao X, et al. RAF1 facilitates KIT signaling and serves as a potential treatment target for gastrointestinal stromal tumor[J]. Oncogene, 2024, 43(27): 2078–2091.
|
| [11] |
Braconi C, Bracci R, Bearzi I, et al. Insulin-like growth factor (IGF) 1 and 2 help to predict disease outcome in GIST patients[J]. Ann Oncol, 2008, 19(7): 1293–1298.
|
| [12] |
Li DG, Jiang JP, Chen FY, et al. Insulin-like growth factor 2 targets IGF1R signaling transduction to facilitate metastasis and imatinib resistance in gastrointestinal stromal tumors[J]. World J Gastrointest Oncol, 2024, 16(8): 3585–3599.
|
| [13] |
Tarn C, Rink L, Merkel E, et al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors[J]. Proc Natl Acad Sci U S A, 2008, 105(24): 8387–8392.
|
| [14] |
Thao le B, Vu HA, Yasuda K, et al. Cas-L was overexpressed in imatinib-resistant gastrointestinal stromal tumor cells[J]. Cancer Biol Ther, 2009, 8(8): 683–688.
|
| [15] |
Obata Y, Horikawa K, Takahashi T, et al. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors[J]. Oncogene, 2017, 36(26): 3661–3672.
|
| [16] |
Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation[J]. Trends Biochem Sci, 2011, 36(6): 320–328.
|
| [17] |
Sun H, Cui Z, Li C, et al. USP5 promotes ripretinib resistance in gastrointestinal stromal tumors by MDH2 deubiquition[J]. Adv Sci (Weinh), 2024, 11(34): e2401171.
|
| [18] |
van Dongen M, Savage ND, Jordanova ES, et al. Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors[J]. Int J Cancer, 2010, 127(4): 899–909.
|
| [19] |
Cavnar MJ, Zeng S, Kim TS, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization[J]. J Exp Med, 2013, 210(13): 2873–2886.
|
| [20] |
Yoo C, Ryu YM, Kim SY, et al. Association between the exposure to anti-angiogenic agents and tumour immune microenvironment in advanced gastrointestinal stromal tumours[J]. Br J Cancer, 2019, 121(10): 819–826.
|
| [21] |
Liu X, Yu J, Li Y, et al. Deciphering the tumor immune microenvironment of imatinib-resistance in advanced gastrointestinal stromal tumors at single-cell resolution[J]. Cell Death Dis, 2024, 15(3): 190.
|
| [22] |
Yoon H, Tang CM, Banerjee S, et al. Cancer-associated fibroblast secretion of PDGFC promotes gastrointestinal stromal tumor growth and metastasis[J]. Oncogene, 2021, 40(11): 1957–1973.
|
| [23] |
Zhao Y, Weng Z, Zhou X, et al. Mesenchymal stromal cells promote the drug resistance of gastrointestinal stromal tumors by activating the PI3K-AKT pathway via TGF-β2[J]. J Transl Med, 2023, 21(1): 219.
|
| [24] |
Blum A, Dorsch D, Linde N, et al. Identification of M4205—a highly selective inhibitor of KIT mutations for treatment of unresectable metastatic or recurrent gastrointestinal stromal tumors[J]. J Med Chem, 2023, 66(4): 2386–2395.
|
| [25] |
De Sutter L, Wozniak A, Verreet J, et al. Antitumor efficacy of the novel KIT inhibitor IDRX-42 (formerly M4205) in patient-and cell line-derived xenograft models of gastrointestinal stromal tumor (GIST)[J]. Clin Cancer Res, 2023, 29(15): 2859–2868.
|
| [26] |
George S, Demetri GD, Lydon N, et al. Phase 1/1b first-in-human study of IDRX-42, a novel oral tyrosine kinase inhibitor (TKI), in patients with metastatic and/or unresectable gastrointestinal stromal tumors (GISTs)[J]. J Clin Oncol, 2023, 41(4 Supplement): TPS483.
|
| [27] |
Banks E, Grondine M, Bhavsar D, et al. Discovery and pharmacological characterization of AZD3229, a potent KIT/PDGFRα inhibitor for treatment of gastrointestinal stromal tumors[J]. Sci Transl Med, 2020, 12(541): eaaz2481.
|
| [28] |
Rivera VM, Huang WS, Lu M, et al. Preclinical characterization of THE-630, a next-generation inhibitor for KIT-mutant gastrointestinal stromal tumors (GIST)[J]. Cancer Research, 2021, 81(13 SUPPL): 1292.
|
| [29] |
George S, Tap W, von Mehren M, et al. Initial results from the phase (ph) 1 portion of a ph 1/2 study of THE-630 in patients (pts) with advanced gastrointestinal stromal tumor (GIST)[J]. J Clin Oncol, 2023, 41(16_suppl): e23508.
|
| [30] |
Serrano C, Leal A, Kuang Y, et al. Phase Ⅰ study of rapid alternation of sunitinib and regorafenib for the treatment of tyrosine kinase inhibitor refractory gastrointestinal stromal tumors[J]. Clin Cancer Res, 2019, 25(24): 7287–7293.
|
| [31] |
Yip D, Zalcberg J, Blay JY, et al. Imatinib alternating with regorafenib compared to imatinib alone for the first-line treatment of advanced gastrointestinal stromal tumor: the AGITG ALT-GIST intergroup randomized phase Ⅱ trial[J]. Br J Cancer, 2025, 132(10): 897–904.
|
| [32] |
Gebreyohannes YK, Burton EA, Wozniak A, et al. PLX9486 shows anti-tumor efficacy in patient-derived, tyrosine kinase inhibitor-resistant KIT-mutant xenograft models of gastrointestinal stromal tumors[J]. Clin Exp Med, 2019, 19(2): 201–210.
|
| [33] |
Wagner AJ, Severson PL, Shields AF, et al. Association of combination of conformation-specific KIT inhibitors with clinical benefit in patients with refractory gastrointestinal stromal tumors: A phase 1b/2a nonrandomized clinical trial[J]. JAMA Oncol, 2021, 7(9): 1343–1350.
|
| [34] |
Tap WD, Wagner AJ, Bauer S, et al. Safety, pharmacokinetics (PK), and clinical activity of bezuclastinib + sunitinib in previously-treated gastrointestinal stromal tumor (GIST): results from part 1 of the phase 3 Peak study[J]. J Clin Oncol, 2023, 41(16 Supplement): 11537.
|
| [35] |
Workman P, Burrows F, Neckers L, et al. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress[J]. Ann N Y Acad Sci, 2007, 1113: 202–216.
|
| [36] |
Saito Y, Takahashi T, Obata Y, et al. TAS-116 inhibits oncogenic KIT signalling on the Golgi in both imatinib-naïve and imatinib-resistant gastrointestinal stromal tumours[J]. Br J Cancer, 2020, 122(5): 658–667.
|
| [37] |
Shimomura A, Yamamoto N, Kondo S, et al. First-in-human phase Ⅰ study of an oral HSP90 inhibitor, TAS-116, in patients with advanced solid tumors[J]. Mol Cancer Ther, 2019, 18(3): 531–540.
|
| [38] |
Kurokawa Y, Honma Y, Sawaki A, et al. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): A randomized, double-blind, placebo-controlled phase Ⅲ trial[J]. Ann Oncol, 2022, 33(9): 959–967.
|
| [39] |
D’Angelo SP, Shoushtari AN, Keohan ML, et al. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: A phase Ⅰb study of dasatinib plus ipilimumab[J]. Clin Cancer Res, 2017, 23(12): 2972–2980.
|
| [40] |
Reilley MJ, Bailey A, Subbiah V, et al. Phase Ⅰ clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies[J]. J Immunother Cancer, 2017, 5: 35.
|
| [41] |
Singh AS, Hecht JR, Rosen L, et al. A randomized phase Ⅱ study of nivolumab monotherapy or nivolumab combined with ipilimumab in patients with advanced gastrointestinal stromal tumors[J]. Clin Cancer Res, 2022, 28(1): 84–94.
|
| [42] |
Li B, Chen H, Yang S, et al. Advances in immunology and immunotherapy for mesenchymal gastrointestinal cancers[J]. Mol Cancer, 2023, 22(1): 71.
|
| [43] |
Sun X, Sun J, Yuan W, et al. Immune cell infiltration and the expression of PD-1 and PD-L1 in primary PDGFRA-mutant gastrointestinal stromal tumors[J]. J Gastrointest Surg, 2021, 25(8): 2091–2100.
|
| [44] |
Edris B, Willingham S, Weiskopf K, et al. Use of a KIT-specific monoclonal antibody to bypass imatinib resistance in gastrointestinal stromal tumors[J]. Oncoimmunology, 2013, 2(6): e24452.
|
| [45] |
Edris B, Willingham SB, Weiskopf K, et al. Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth[J]. Proc Natl Acad Sci U S A, 2013, 110(9): 3501–3506.
|
| [46] |
L’Italien L, Orozco O, Abrams T, et al. Mechanistic insights of an immunological adverse event induced by an anti-KIT antibody drug conjugate and mitigation strategies[J]. Clin Cancer Res, 2018, 24(14): 3465–3474.
|
| [47] |
Karlsson-Parra A, Kovacka J, Heimann E, et al. Ilixadencel-an allogeneic cell-based anticancer immune primer for intratumoral administration[J]. Pharm Res, 2018, 35(8): 156.
|
| [48] |
Fiorino E, Merlini A, D’Ambrosio L, et al. Integrated antitumor activities of cellular immunotherapy with CIK lymphocytes and interferons against KIT/PDGFRA wild type GIST[J]. Int J Mol Sci, 2022, 23(18): 10368.
|