[1] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
|
[2] |
Luo W, Zhang Y, He G, et al. Effects of radiofrequency ablation versus other ablating techniques on hepatocellular carcinomas: A systematic review and Meta-analysis[J]. World J Surg Oncol, 2017, 15(1): 126.
|
[3] |
Vogl TJ, Nour-Eldin NA, Hammerstingl RM, et al. Microwave Ablation (MWA): basics, technique and results in primary and metastatic liver neoplasms - review article[J]. Rofo, 2017, 189(11): 1055-1066.
|
[4] |
Meloni MF, Chiang J, Laeseke PF, et al. Microwave ablation in primary and secondary liver tumours: technical and clinical approaches[J]. Int J Hyperthermia, 2017, 33(1): 15-24.
|
[5] |
Wu F. Heat-based tumor ablation: role of the immune response[J]. Adv Exp Med Biol, 2016, 880: 131-153.
|
[6] |
陈亚峰, 杜锡林, 董瑞, 等. 腹腔镜下超声引导微波消融治疗巨大肝血管瘤疗效分析[J/CD]. 中华肝脏外科手术学电子杂志, 2020, 9(4): 333-338.
|
[7] |
Izzo F, Granata V, Grassi R, et al. Radiofrequency ablation and microwave ablation in liver tumors: An update[J]. Oncologist, 2019, 24(10): e990-990, e1005.
|
[8] |
Santambrogio R, Chiang J, Barabino M, et al. Comparison of laparoscopic microwave to radiofrequency ablation of small hepatocellular carcinoma (3 cm)[J]. Ann Surg Oncol, 2017, 24(1):257-263.
|
[9] |
Vogl TJ, Basten LM, Nour-Eldin NA, et al. Evaluation of microwave ablation of liver malignancy with enabled constant spatial energy control to achieve a predictable spherical ablation zone[J]. Int J Hyperthermia, 2018, 34(4): 492-500.
|
[10] |
《原发性肝癌诊疗规范(年版)》编写专家委员会. 原发性肝癌诊疗规范(2019年版)[J]. 中国临床医学, 2020, 27(1): 140-156.
|
[11] |
Liang P, Yu J, Lu MD, et al. Practice guidelines for ultrasound-guided percutaneous microwave ablation for hepatic malignancy[J]. World J Gastroenterol, 2013, 19(33): 5430-5438.
|
[12] |
Rao Z, Ling W, Dai X, et al. Precoagulation with microwave ablation for hepatic parenchymal transection during liver partial resection[J]. Int J Hyperthermia, 2019, 36(1): 146-150.
|
[13] |
Zhang M, Ma H, Zhang J, et al. Comparison of microwave ablation and hepatic resection for hepatocellular carcinoma: A meta-analysis[J]. Onco Targets Ther, 2017, 10: 4829-4839.
|
[14] |
Xu Y, Shen Q, Wang N, et al. Microwave ablation is as effective as radiofrequency ablation for very-early-stage hepatocellular carcinoma[J]. Chin J Cancer, 2017, 36(1): 14.
|
[15] |
Dong LN, Yu XL, Cheng ZG, et al. Comparison of parallel and crossed placement of antennas in microwave ablation of 3-5 cm hepatocellular carcinoma[J]. Abdom Radiol (NY), 2019, 44(6): 2293-2300.
|
[16] |
Liu Y, Zheng Y, Li S, et al. Percutaneous microwave ablation of larger hepatocellular carcinoma[J]. Clin Radiol, 2013, 68(1): 21-26.
|
[17] |
Shi J, Sun Q, Wang Y, et al. Comparison of microwave ablation and surgical resection for treatment of hepatocellular carcinomas conforming to Milan criteria[J]. J Gastroenterol Hepatol, 2014, 29(7): 1500-1507.
|
[18] |
Medhat E, Abdel Aziz A, Nabeel M, et al. Value of microwave ablation in treatment of large lesions of hepatocellular carcinoma[J]. J Dig Dis, 2015, 16(8): 456-463.
|
[19] |
Dou JP, Liang P, Yu J. Microwave ablation for liver tumors[J]. Abdom Radiol (NY), 2016, 41(4): 650-658.
|
[20] |
Song P, Sheng L, Sun Y, et al. The clinical utility and outcomes of microwave ablation for colorectal cancer liver metastases[J]. Oncotarget, 2017, 8(31): 51792-51799.
|
[21] |
Qin S, Liu GJ, Huang M, et al. The local efficacy and influencing factors of ultrasound-guided percutaneous microwave ablation in colorectal liver metastases: A review of a 4-year experience at a single center[J]. Int J Hyperthermia, 2019, 36(1): 36-43.
|
[22] |
Smolock AR, Cristescu MM, Hinshaw A, et al. Combination transarterial chemoembolization and microwave ablation improves local tumor control for 3- to 5-cm hepatocellular carcinoma when compared with transarterial chemoembolization alone[J]. Abdom Radiol (NY), 2018, 43(9): 2497-2504.
|
[23] |
Li W, Ni CF. Current status of the combination therapy of transarterial chemoembolization and local ablation for hepatocellular carcinoma[J]. Abdom Radiol (NY), 2019, 44(6): 2268-2275.
|
[24] |
Zheng L, Li HL, Guo CY, et al. Comparison of the efficacy and prognostic factors of transarterial chemoembolization plus microwave ablation versus transarterial chemoembolization alone in patients with a large solitary or multinodular hepatocellular carcinomas[J]. Korean J Radiol, 2018, 19(2): 237-246.
|
[25] |
王剑宇, 徐浩, 许伟, 等. TACE术后超声引导下经皮无水乙醇注射术联合微波消融治疗特殊部位肝癌[J]. 中国介入影像与治疗学, 2019, 16(4): 203-206.
|
[26] |
Glassberg MB, Ghosh S, Clymer JW, et al. Microwave ablation compared with hepatic resection for the treatment of hepatocellular carcinoma and liver metastases: A systematic review and meta-analysis[J]. World J Surg Oncol, 2019, 17(1): 98.
|
[27] |
Jin T, Liu X, Dai C, et al. Beneficial impact of microwave ablation-assisted laparoscopic hepatectomy in cirrhotic hepatocellular carcinoma patients: A propensity score matching analysis[J]. Int J Hyperthermia, 2019, 36(1): 530-537.
|
[28] |
An C, Li X, Zhang M, et al. 3D visualization ablation planning system assisted microwave ablation for hepatocellular carcinoma (Diameter >3): A precise clinical application[J]. BMC Cancer, 2020, 20(1): 44.
|
[29] |
杨洋, 郭磊, 郭卫星. 数字医学三维成像技术在原发性肝癌治疗中的应用[J/CD]. 中华肝脏外科手术学电子杂志, 2019, 8(1): 14-17.
|
[30] |
Huang ZM, Zuo MX, Gu YK, et al. Computed tomography-guided radiofrequency ablation combined with transarterial embolization assisted by a three-dimensional visualization ablation planning system for hepatocellular carcinoma in challenging locations: A preliminary study[J]. Abdom Radiol (NY), 2020, 45(4): 1181-1192.
|
[31] |
Zhang LL, Xia GM, Liu YJ, et al. Effect of a poloxamer 407-based thermosensitive gel on minimization of thermal injury to diaphragm during microwave ablation of the liver[J]. World J Gastroenterol, 2017, 23(12): 2141-2148.
|
[32] |
Zhang D, Xie D, Wei X, et al. Microwave ablation of the liver abutting the stomach: insulating effect of a chitosan-based thermosensitive hydrogel[J]. Int J Hyperthermia, 2014, 30(2): 126-133.
|
[33] |
Willerding L, Limmer S, Hossann M, et al. Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors[J]. J Control Release, 2016, 222: 47-55.
|
[34] |
Jin Y, Liang X, An Y, et al. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer[J]. Bioconjug Chem, 2016, 27(12): 2931-2942.
|
[35] |
Park WK, Maxwell AW, Frank VE, et al. Evaluation of a novel thermal accelerant for augmentation of microwave energy during image-guided tumor ablation[J]. Theranostics, 2017, 7(4): 1026-1035.
|
[36] |
Park W, Maxwell A, Frank VE, et al. The in vivo performance of a novel thermal accelerant agent used for augmentation of microwave energy delivery within biologic tissues during image-guided thermal ablation: a porcine study[J]. Int J Hyperthermia, 2018, 34(1): 11-18.
|
[37] |
Tan L, Tang W, Liu T, et al. Biocompatible hollow polydopamine nanoparticles loaded ionic liquid enhanced tumor microwave thermal ablation in vivo[J]. ACS Appl Mater Interfaces, 2016, 8(18): 11237-11245.
|
[38] |
Long D, Mao J, Liu T, et al. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy[J]. Nanoscale, 2016, 8(21): 11044-11051.
|