切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 231 -236. doi: 10.3877/cma.j.issn.1674-0793.2023.03.015

综述

循环肿瘤细胞的检测及其在乳腺癌中的应用
冯雪园, 韩萌萌, 马宁()   
  1. 071000 保定市第一中心医院乳腺外二科
  • 收稿日期:2022-07-03 出版日期:2023-06-01
  • 通信作者: 马宁

Detection of circulating tumor cells and its application in breast cancer

Xueyuan Feng, Mengmeng Han, Ning Ma()   

  1. The Second Department of Breast Surgery, Baoding NO.1 Central Hospital, Baoding 071000, China
  • Received:2022-07-03 Published:2023-06-01
  • Corresponding author: Ning Ma
引用本文:

冯雪园, 韩萌萌, 马宁. 循环肿瘤细胞的检测及其在乳腺癌中的应用[J/OL]. 中华普通外科学文献(电子版), 2023, 17(03): 231-236.

Xueyuan Feng, Mengmeng Han, Ning Ma. Detection of circulating tumor cells and its application in breast cancer[J/OL]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(03): 231-236.

循环肿瘤细胞(CTC)是从原发肿瘤脱落并在血液中循环的细胞,其转移和继发与肿瘤的形成、癌症相关死亡密切相关。在过去的十年里,许多基于CTC的生物学和物理差异的分离和检测方法已经发展起来。最近的研究表明,CTC在原发性和转移性环境中都可能成为预测乳腺癌生存和治疗监测的关键指标之一,其表征可能成为生物疗法的新靶点。

Circulating tumor cells (CTC) are cells that fall off from primary tumors and circulate in the blood, and their metastasis and formation of a secondary tumor are closely associated with cancer-related death. In the last decade, many detection methods based on biological and physical differences in CTC have been developed. Recent studies indicate that CTC have the potential to predict prognosis in both primary and metastatic settings, and CTC may be one of the key indicators to predicting survival and therapeutic monitoring in breast cancer, and their characterization may be novel targets for biological therapies.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
国家肿瘤质控中心乳腺癌专家委员会, 中国抗癌协会乳腺癌专业委员会, 中国抗癌协会肿瘤药物临床研究专业委员会. 中国晚期乳腺癌规范诊疗指南(2020版)[J]. 中华肿瘤杂志, 2020, 42(10): 781-797.
[3]
Smit DJ, Pantel K, Jücker M. Circulating tumor cells as a promising target for individualized drug susceptibility tests in cancer therapy[J]. Biochem Pharmac, 2021, 188: 114589.
[4]
Chelakkot C, Yang H, Shin YK. Relevance of circulating tumor cells as predictive markers for cancer incidence and relapse[J]. Pharmaceuticals, 2022, 15(1): 75.
[5]
Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases[J]. Clin Cancer Rese, 2004, 10(20): 6897-6904.
[6]
Spizzo G, Fong D, Wurm M, et al. EpCAM expression in primary tumour tissues and metastases: An immunohistochemical analysis[J]. J Clin Pathol, 2011, 64(5): 415-420.
[7]
Debnath P, Huirem RS, Dutta P, et al. Epithelial–mesenchymal transition and its transcription factors[J]. Biosci Rep, 2022, 42(1): BSR20211754.
[8]
Buyuk B, Jin S, Ye K. Epithelial-to-mesenchymal transition signaling pathways responsible for breast cancer metastasis[J]. Cell Mol Bioengineer, 2021, 15(1): 1-13.
[9]
Topa J, Grešner P, Żaczek A J, et al. Breast cancer circulating tumor cells with mesenchymal features—an unreachable target?[J]. Cell Mol Life Sci, 2022, 79(2): 81.
[10]
Mendelaar PAJ, Kraan J, Van M, et al. Defining the dimensions of circulating tumor cells in a large series of breast, prostate, colon, and bladder cancer patients[J]. Mol Oncol, 2021, 15(1): 116-125.
[11]
Rahmati M, Chen X. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation[J]. Biomed Microdevices, 2021, 23(4): 49.
[12]
Farasat M, Chavoshi SM, Bakhshi A, et al. A dielectrophoresis-based microfluidic chip for trapping circulating tumor cells using a porous membrane[J]. J Micromechan Microengineer, 2021, 32(1): 015008.
[13]
Kalyan S, Torabi C, Khoo H, et al. Inertial microfluidics enabling clinical research[J]. Micromachines, 2021, 12(3): 257.
[14]
Soler A, Cayrefourcq L, Mazel M, et al. EpCAM-independent enrichment and detection of viable circulating tumor cells using the EPISPOT assay[M]//Circulating Tumor Cells. Humana Press, New York, NY, 2017: 263-276.
[15]
Park HS, Han HJ, Lee S, et al. Detection of circulating tumor cells in breast cancer patients using cytokeratin-19 real-time RT-PCR[J]. Yonsei Med J, 2017, 58(1): 19-26.
[16]
Descamps L, Le Roy D, Deman AL. Microfluidic-based technologies for CTC isolation: A review of 10 years of intense efforts towards liquid biopsy[J]. Int J Mol Sci, 2022, 23(4): 1981.
[17]
Farshchi F, Hasanzadeh M. Microfluidic biosensing of circulating tumor cells (CTCs): recent progress and challenges in efficient diagnosis of cancer[J]. Biomed Pharmacother, 2021, 134: 111153.
[18]
Marmot MG, Altman DG, Cameron DA, et al. The benefits and harms of breast cancer screening: An independent review[J]. Br J Cancer, 2013, 108(11): 2205-2240.
[19]
Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk[J]. JAMA, 2012, 307(13): 1394-1404.
[20]
Gao Y, Fan WH, Duan C, et al. Enhancing the screening efficiency of breast cancer by combining conventional medical imaging examinations with circulating tumor cells[J]. Front Oncol 2021, 11: 643003.
[21]
Janni WJ, Rack B, Terstappen LW, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancerJ]. Clin Cancer Res, 2016, 22(10): 2583-2593.
[22]
Bidard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: A pooled analysis of individual patient data[J]. Lancet Oncol, 2014, 15(4): 406-414.
[23]
龚嘉, 徐峰, 周美容, 等.循环肿瘤细胞与早期乳腺癌临床病理特征的相关性[J]. 中南大学学报(医学版), 2019, 44(9): 1016-1022.
[24]
Zhou M, Jiang L, Fan Y, et al. Correlation between circulating tumor cells and different molecular biological characteristics in breast cancer patients[J]. Gland Surg, 2022, 11(2): 466-471.
[25]
李蕾, 刘毅, 张少华, 等. 循环肿瘤细胞检测在不同阶段不同类型乳腺癌中的应用及意义[J]. 中华医学杂志, 2014, 100(36): 2812-2815.
[26]
Sanches SM, Braun AC, Calsavara VF, et al. Comparison of hormonal receptor expression and HER2 status between circulating tumor cells and breast cancer metastases[J]. Clinics, 2021, 76: e2971.
[27]
Fehm T, Hoffmann O, Aktas B, et al. Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells[J]. Breast Cancer Res, 2009, 11(4): 1-9.
[28]
Bouris P, Skandalis SS, Piperigkou Z, et al. Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells[J]. Matrix Biol, 2015, 43: 42-60.
[29]
Müller V, Banys-Paluchowski M, Friedl TWP, et al. Prognostic relevance of the HER2 status of circulating tumor cells in metastatic breast cancer patients screened for participation in the DETECT study program[J]. ESMO Open, 2021, 6(6): 100299.
[30]
Georgoulias V, Bozionelou V, Agelaki S, et al. Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19 mRNA-positive circulating tumor cells: results of a randomized phase Ⅱ study[J]. Ann Oncol, 2012, 23(7): 1744-1750.
[31]
Schramm A, Friedl TWP, Schochter F, et al. Therapeutic intervention based on circulating tumor cell phenotype in metastatic breast cancer: concept of the DETECT study program[J]. Arch Gynecol Obstet, 2016, 293(2): 271-281.
[32]
Shliakhtunou YA. CTCs-oriented adjuvant personalized cytostatic therapy non-metastatic breast cancer patients: continuous non-randomized prospective study and prospective randomized controlled study[J]. Breast Cancer Res Treat, 2021, 186(2): 439-451.
[33]
Yan WT, Cui X, Chen Q, et al. Circulating tumor cell status monitors the treatment responses in breast cancer patients: A meta-analysis[J]. Sci Rep, 2017, 7(1): 1-12.
[34]
Duma MN. Association of circulating tumor cell status with benefit of radiotherapy and survival in early-stage breast cancer[J]. Strahlenther Onkol, 2018, 194(11): 1069-1071.
[35]
Wang J, Wang X, Chen R, et al. Circulating tumor cells may serve as a supplement to RECIST in neoadjuvant chemotherapy of patients with locally advanced breast cancer[J]. Int J Clin Oncol, 2022, 27(5): 889-898.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 周荷妹, 金杰, 叶建东, 夏之一, 王进进, 丁宁. 罕见成人肋骨郎格汉斯细胞组织细胞增生症被误诊为乳腺癌术后骨转移一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 380-383.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[5] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[6] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[7] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[8] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[9] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[10] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[11] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[12] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[13] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[14] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[15] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?