切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 231 -236. doi: 10.3877/cma.j.issn.1674-0793.2023.03.015

综述

循环肿瘤细胞的检测及其在乳腺癌中的应用
冯雪园, 韩萌萌, 马宁()   
  1. 071000 保定市第一中心医院乳腺外二科
  • 收稿日期:2022-07-03 出版日期:2023-06-01
  • 通信作者: 马宁

Detection of circulating tumor cells and its application in breast cancer

Xueyuan Feng, Mengmeng Han, Ning Ma()   

  1. The Second Department of Breast Surgery, Baoding NO.1 Central Hospital, Baoding 071000, China
  • Received:2022-07-03 Published:2023-06-01
  • Corresponding author: Ning Ma
引用本文:

冯雪园, 韩萌萌, 马宁. 循环肿瘤细胞的检测及其在乳腺癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 231-236.

Xueyuan Feng, Mengmeng Han, Ning Ma. Detection of circulating tumor cells and its application in breast cancer[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(03): 231-236.

循环肿瘤细胞(CTC)是从原发肿瘤脱落并在血液中循环的细胞,其转移和继发与肿瘤的形成、癌症相关死亡密切相关。在过去的十年里,许多基于CTC的生物学和物理差异的分离和检测方法已经发展起来。最近的研究表明,CTC在原发性和转移性环境中都可能成为预测乳腺癌生存和治疗监测的关键指标之一,其表征可能成为生物疗法的新靶点。

Circulating tumor cells (CTC) are cells that fall off from primary tumors and circulate in the blood, and their metastasis and formation of a secondary tumor are closely associated with cancer-related death. In the last decade, many detection methods based on biological and physical differences in CTC have been developed. Recent studies indicate that CTC have the potential to predict prognosis in both primary and metastatic settings, and CTC may be one of the key indicators to predicting survival and therapeutic monitoring in breast cancer, and their characterization may be novel targets for biological therapies.

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
国家肿瘤质控中心乳腺癌专家委员会, 中国抗癌协会乳腺癌专业委员会, 中国抗癌协会肿瘤药物临床研究专业委员会. 中国晚期乳腺癌规范诊疗指南(2020版)[J]. 中华肿瘤杂志, 2020, 42(10): 781-797.
[3]
Smit DJ, Pantel K, Jücker M. Circulating tumor cells as a promising target for individualized drug susceptibility tests in cancer therapy[J]. Biochem Pharmac, 2021, 188: 114589.
[4]
Chelakkot C, Yang H, Shin YK. Relevance of circulating tumor cells as predictive markers for cancer incidence and relapse[J]. Pharmaceuticals, 2022, 15(1): 75.
[5]
Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases[J]. Clin Cancer Rese, 2004, 10(20): 6897-6904.
[6]
Spizzo G, Fong D, Wurm M, et al. EpCAM expression in primary tumour tissues and metastases: An immunohistochemical analysis[J]. J Clin Pathol, 2011, 64(5): 415-420.
[7]
Debnath P, Huirem RS, Dutta P, et al. Epithelial–mesenchymal transition and its transcription factors[J]. Biosci Rep, 2022, 42(1): BSR20211754.
[8]
Buyuk B, Jin S, Ye K. Epithelial-to-mesenchymal transition signaling pathways responsible for breast cancer metastasis[J]. Cell Mol Bioengineer, 2021, 15(1): 1-13.
[9]
Topa J, Grešner P, Żaczek A J, et al. Breast cancer circulating tumor cells with mesenchymal features—an unreachable target?[J]. Cell Mol Life Sci, 2022, 79(2): 81.
[10]
Mendelaar PAJ, Kraan J, Van M, et al. Defining the dimensions of circulating tumor cells in a large series of breast, prostate, colon, and bladder cancer patients[J]. Mol Oncol, 2021, 15(1): 116-125.
[11]
Rahmati M, Chen X. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation[J]. Biomed Microdevices, 2021, 23(4): 49.
[12]
Farasat M, Chavoshi SM, Bakhshi A, et al. A dielectrophoresis-based microfluidic chip for trapping circulating tumor cells using a porous membrane[J]. J Micromechan Microengineer, 2021, 32(1): 015008.
[13]
Kalyan S, Torabi C, Khoo H, et al. Inertial microfluidics enabling clinical research[J]. Micromachines, 2021, 12(3): 257.
[14]
Soler A, Cayrefourcq L, Mazel M, et al. EpCAM-independent enrichment and detection of viable circulating tumor cells using the EPISPOT assay[M]//Circulating Tumor Cells. Humana Press, New York, NY, 2017: 263-276.
[15]
Park HS, Han HJ, Lee S, et al. Detection of circulating tumor cells in breast cancer patients using cytokeratin-19 real-time RT-PCR[J]. Yonsei Med J, 2017, 58(1): 19-26.
[16]
Descamps L, Le Roy D, Deman AL. Microfluidic-based technologies for CTC isolation: A review of 10 years of intense efforts towards liquid biopsy[J]. Int J Mol Sci, 2022, 23(4): 1981.
[17]
Farshchi F, Hasanzadeh M. Microfluidic biosensing of circulating tumor cells (CTCs): recent progress and challenges in efficient diagnosis of cancer[J]. Biomed Pharmacother, 2021, 134: 111153.
[18]
Marmot MG, Altman DG, Cameron DA, et al. The benefits and harms of breast cancer screening: An independent review[J]. Br J Cancer, 2013, 108(11): 2205-2240.
[19]
Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk[J]. JAMA, 2012, 307(13): 1394-1404.
[20]
Gao Y, Fan WH, Duan C, et al. Enhancing the screening efficiency of breast cancer by combining conventional medical imaging examinations with circulating tumor cells[J]. Front Oncol 2021, 11: 643003.
[21]
Janni WJ, Rack B, Terstappen LW, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancerJ]. Clin Cancer Res, 2016, 22(10): 2583-2593.
[22]
Bidard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: A pooled analysis of individual patient data[J]. Lancet Oncol, 2014, 15(4): 406-414.
[23]
龚嘉, 徐峰, 周美容, 等.循环肿瘤细胞与早期乳腺癌临床病理特征的相关性[J]. 中南大学学报(医学版), 2019, 44(9): 1016-1022.
[24]
Zhou M, Jiang L, Fan Y, et al. Correlation between circulating tumor cells and different molecular biological characteristics in breast cancer patients[J]. Gland Surg, 2022, 11(2): 466-471.
[25]
李蕾, 刘毅, 张少华, 等. 循环肿瘤细胞检测在不同阶段不同类型乳腺癌中的应用及意义[J]. 中华医学杂志, 2014, 100(36): 2812-2815.
[26]
Sanches SM, Braun AC, Calsavara VF, et al. Comparison of hormonal receptor expression and HER2 status between circulating tumor cells and breast cancer metastases[J]. Clinics, 2021, 76: e2971.
[27]
Fehm T, Hoffmann O, Aktas B, et al. Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells[J]. Breast Cancer Res, 2009, 11(4): 1-9.
[28]
Bouris P, Skandalis SS, Piperigkou Z, et al. Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells[J]. Matrix Biol, 2015, 43: 42-60.
[29]
Müller V, Banys-Paluchowski M, Friedl TWP, et al. Prognostic relevance of the HER2 status of circulating tumor cells in metastatic breast cancer patients screened for participation in the DETECT study program[J]. ESMO Open, 2021, 6(6): 100299.
[30]
Georgoulias V, Bozionelou V, Agelaki S, et al. Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19 mRNA-positive circulating tumor cells: results of a randomized phase Ⅱ study[J]. Ann Oncol, 2012, 23(7): 1744-1750.
[31]
Schramm A, Friedl TWP, Schochter F, et al. Therapeutic intervention based on circulating tumor cell phenotype in metastatic breast cancer: concept of the DETECT study program[J]. Arch Gynecol Obstet, 2016, 293(2): 271-281.
[32]
Shliakhtunou YA. CTCs-oriented adjuvant personalized cytostatic therapy non-metastatic breast cancer patients: continuous non-randomized prospective study and prospective randomized controlled study[J]. Breast Cancer Res Treat, 2021, 186(2): 439-451.
[33]
Yan WT, Cui X, Chen Q, et al. Circulating tumor cell status monitors the treatment responses in breast cancer patients: A meta-analysis[J]. Sci Rep, 2017, 7(1): 1-12.
[34]
Duma MN. Association of circulating tumor cell status with benefit of radiotherapy and survival in early-stage breast cancer[J]. Strahlenther Onkol, 2018, 194(11): 1069-1071.
[35]
Wang J, Wang X, Chen R, et al. Circulating tumor cells may serve as a supplement to RECIST in neoadjuvant chemotherapy of patients with locally advanced breast cancer[J]. Int J Clin Oncol, 2022, 27(5): 889-898.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 张华, 孙宇, 乡世健, 李樱媚, 王小群. 循环肿瘤细胞预测晚期胃肠癌患者化疗药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2023, 17(06): 422-425.
[4] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[5] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[8] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[9] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[10] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[11] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[12] 鲁鑫, 许佳怡, 刘洋, 杨琴, 鞠雯雯, 徐缨龙. 早期LC术与PTCD续贯LC术治疗急性胆囊炎对患者肝功能及预后的影响比较[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 648-650.
[13] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
阅读次数
全文


摘要