切换至 "中华医学电子期刊资源库"

中华普通外科学文献(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 426 -432. doi: 10.3877/cma.j.issn.1674-0793.2023.06.005

论著

基于生物信息学分析胃癌中PUM的预后意义
李越洲, 张孔玺, 李小红, 商中华()   
  1. 030001 太原,山西医科大学第二医院普通外科
  • 收稿日期:2023-04-04 出版日期:2023-12-01
  • 通信作者: 商中华

Prognostic significance of PUM in gastric carcinoma based on bioinformatics analysis

Yuezhou Li, Kongxi Zhang, Xiaohong Li, Zhonghua Shang()   

  1. Department of General Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2023-04-04 Published:2023-12-01
  • Corresponding author: Zhonghua Shang
引用本文:

李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.

Yuezhou Li, Kongxi Zhang, Xiaohong Li, Zhonghua Shang. Prognostic significance of PUM in gastric carcinoma based on bioinformatics analysis[J]. Chinese Archives of General Surgery(Electronic Edition), 2023, 17(06): 426-432.

目的

利用生物信息学方法探索Pumilio(PUM)蛋白作为胃癌潜在生物标志物的可能性。

方法

从UCSC Xena官网下载TCGA-STAD队列作为训练集,从GEO数据库下载GSE15459作为验证集。基于训练集中胃癌样本的生存时间和生存状态,按照PUM1和PUM2的最佳截断值将胃癌样本分为高、低表达组,分别对PUM1和PUM2进行生存分析,并选取与胃癌预后生存显著相关的PUM;然后分别对该PUM高、低表达组以及胃癌和正常样本组进行差异分析,筛选出PUM-差异表达基因(PUM-DEGs)和DEGs,两者取交集获得候选基因,单因素Cox和套索算法(LASSO)回归分析后得到风险模型基因,对胃癌和正常样本风险模型基因的表达量进行分析,并构建相关预后预测模型;最后进行免疫细胞浸润分析和化疗药物敏感性分析。

结果

基于PUM2的高、低表达组间患者生存率差异有统计学意义(P<0.05),PUM2与胃癌的预后生存显著相关。通过差异分析共得到307个PUM2-DEGs和4 176个DEGs,获得209个候选基因,筛选出33个预后相关基因和LBP、CST2、IGFBP1、C5orf46共4个风险模型基因,其在胃癌样本中的表达量均大于正常样本。成功构建可有效预测胃癌患者1、3、5年生存率的预后预测模型并验证了其有效性。免疫细胞浸润分析发现,记忆B细胞、M0巨噬细胞、浆细胞等6种免疫细胞的丰度以及18种免疫检查点分子在高、低风险组间差异有统计学意义(P<0.05)。药物敏感性分析显示,低风险组达沙替尼、多西他赛、银胶菊内酯等药物的50%抑制浓度(IC50)高于高风险组。

结论

PUM2与胃癌患者的预后相关,是胃癌的潜在生物标志物,以4个PUM2-DEGs构建的模型可用于胃癌预后预测,基于预后预测模型进行的免疫细胞分析及药物敏感性分析提示了胃癌潜在的免疫和化疗药物治疗方向。

Objective

To explore the possibility of Pumilio (PUM) protein as a potential biomarker in gastric carcinoma (GC) by bioinformatics methods.

Methods

The TCGA-STAD queue was downloaded from UCSC Xena’s official website as the training set, and GSE15459 was downloaded from Gene Expression Omnibus (GEO) as the verification set. Based on the survival time and state of GC samples in the training set, GC samples were divided into high and low expression groups according to the optimal cut-off values of PUM1 and PUM2. Survival analysis was performed at PUM1 and PUM2 respectively, and PUM associated with GC prognostic survival significantly were selected. PUM-differentially expressed genes (PUM-DEGs) and DEGs were entially screened out to obtain candidate genes in the high and low expression groups of PUM, as well as in the GC and normal samples, respectively. Through univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses, the risk model genes were further analyzed, and a prognosis prediction model was established. Finally, immunocyte infiltration analysis and chemotherapy drug sensitivity analysis were performed.

Results

There were significant differences in survival rates between the groups with high and low PUM2-based expression (P<0.05), indicating that PUM2 was significantly correlated with the prognostic survival of GC. A total of 307 PUM2-DEGs and 4 176 DEGs were obtained by difference analysis, and 209 candidate genes were obtained, 33 prognostic related genes and 4 risk model genes (LBP, CST2, IGFBP1, C5orf46) were screened out. The expressions of LBP, CST2, IGFBP1 and C5orf46 in GC samples were higher than those in normal samples. A prognostic prediction model for predicting effectively the survival rates of GC patients at 1-, 3- and 5-year was constructed and verified. Immunocyte infiltration analysis showed significant differences in the abundance of six immune cells such as memory B cells, M0 macrophages, plasma cells and 18 immune checkpoint molecules between the high and low risk groups (P<0.05). The inhibitory concentration (IC50) of drugs including dasatinib, docetaxel, parthenolide in the low risk group was higher than that in the high risk group.

Conclusions

PUM2 is associated with the prognosis of patients with GC and is a potential biomarker of GC. A prognostic prediction model constructed with four PUM2-DEGs can be used to predict the prognosis of GC. Immunoanalysis and drug sensitivity analysis based on the prognostic prediction model suggest the potential direction of immune and chemotherapy drug treatment of GC.

图1 PUM1和PUM2不同表达水平与胃癌的关系 A为基于胃癌和正常组的间箱线图;B为区分胃癌的ROC曲线;C为胃癌预后的Kaplan-Meier生存曲线
图2 PUM2-差异表达基因(DEGs)的筛选和功能富集分析 A为前10个上调和下调PUM2-DEGs基因分布火山图;B为热图;C为PUM2-DEGs的GO富集结果可视化;D为KEGG富集结果
图3 差异基因相交韦恩图
图4 胃癌预后相关基因的筛选 A为单因素Cox分析筛选预后相关基因森林图;B为LASSO分析中调整参数的十次交叉验证;C为LASSO系数谱图
图5 训练集和验证集风险模型的验证及其与胃癌预后关系 A、C分别为Kaplan-Meier生存曲线;B、D分别为预测胃癌1、3、5年总生存率
图6 胃癌预后的影响因素分析以及预测模型的构建和验证 A、B分别为单因素和多因素Cox回归临床指标森林图;C、D分别为列线图模型及其校准曲线
图7 胃癌样本与免疫细胞浸润的相关性 A为22种免疫浸润细胞丰度直方图;B为免疫浸润细胞相关性热图;C为免疫浸润细胞丰度基于高风险组和低风险组间箱线图;D为免疫检查点分子表达量基于高风险组和低风险组间箱线图
图8 基于不同风险组胃癌患者与10种药物的敏感性分析
[1]
中华人民共和国国家卫生健康委员会医政医管局. 胃癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(9): 1137-1164.
[2]
Ajani JA, D’Amico TA, Bentrem DJ, et al. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(2): 167-192.
[3]
Smialek MJ, Ilaslan E, Sajek MP, et al. Role of PUM RNA-binding proteins in cancer[J]. Cancers (Basel), 2021, 13(1): 1294
[4]
Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves[J]. BMC Bioinformatics, 2011, 12: 77.
[5]
Mueller SK, Wendler O, Nocera A, et al. Escalation in mucus cystatin 2, pappalysin-A, and periostin levels over time predict need for recurrent surgery in chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(10): 1212-1219.
[6]
Zhang WP, Wang Y, Tan D, et al. Cystatin 2 leads to a worse prognosis in patients with gastric cancer[J]. J Biol Regul Homeost Agents, 2020, 34(6): 2059-2067.
[7]
Yi HK, Kim SY, Hwang PH, et al. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells[J]. Biochem Biophys Res Commun, 2005, 330(3): 760-767.
[8]
Yi HK, Hwang PH, Yang DH, et al. Expression of the insulin-like growth factors (IGFs) and the IGF-binding proteins (IGFBPs) in human gastric cancer cells[J]. Eur J Cancer, 2001, 37(17): 2257-2263.
[9]
Luo C, Sun F, Zhu H, et al. Insulin-like growth factor binding protein-1 (IGFBP-1) upregulated by Helicobacter pylori and is associated with gastric cancer cells migration[J]. Pathol Res Pract, 2017, 213(9): 1029-1036.
[10]
Castaño-Rodríguez N, Kaakoush NO, Pardo AL, et al. Genetic polymorphisms in the Toll-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer[J]. Hum Immunol, 2014, 75(8): 808-815.
[11]
Voorberg AN, Niehues H, Oosterhaven J, et al. Vesicular hand eczema transcriptome analysis provides insights into its pathophysiology[J]. Exp Dermatol, 2021, 30(12): 1775-1786.
[12]
Zhou Y, Tong Z, Jiang S, et al. The roles of endoplasmic reticulum in NLRP3 inflammasome activation[J]. Cells, 2020, 9(5): 1219.
[13]
Wilky BA. Immune checkpoint inhibitors: the linchpins of modern immunotherapy[J]. Immunol Rev, 2019, 290(1): 6-23.
[14]
Sztiller-Sikorska M, Czyz M. Parthenolide as cooperating agent for anti-cancer treatment of various malignancies[J]. Pharmaceuticals, 2020, 13(8): 194.
[15]
Liu M, Yang Y, Liu D, et al. Parthenolide increases the sensitivity of gastric cancer cells to chemotherapy[J]. J Tradit Chin Med, 2020, 40(6): 908-916.
[1] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[2] 闫笑生, 郑智, 翟育豪, 张海翘, 王鈢, 刘小野, 尹杰, 张军. Borrmann Ⅳ型胃癌临床诊断、病理特征及预后分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 346-351.
[3] 王龙彪, 刘洪, 董天雄. 中心体扩增细胞占比和C反应蛋白-白蛋白比值对胃癌根治术治疗预后的预测价值[J]. 中华普通外科学文献(电子版), 2023, 17(05): 352-356.
[4] 莫波, 王佩, 王恒, 何志军, 梁俊, 郝志楠. 腹腔镜胃癌根治术与改良胃癌根治术治疗早期胃癌的疗效[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 644-647.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 王鸿彬, 何晓, 吴菁宙. 腹腔镜近端胃切除术中背驮式间置空肠单通道重建术在AEG手术的安全性及抗反流效果研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 526-529.
[7] 宋钰, 赵阳, 王惠君, 廖新华. 术前BMI与可切除胃癌患者术后远期生存的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 530-533.
[8] 高静, 严学倩, 及月茹, 郝淼旺, 刘苍春. 胃癌患者以慢性贫血为首发表现的高危因素Logistic分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 534-537.
[9] 张彬, 贾贵清, 吴东松, 曹绿洲, 张焰凌, 黄灏, 赵高平. 早期胃癌保功能手术治疗13例病例分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 575-579.
[10] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[11] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[12] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[13] 陈淑钿, 梁韵, 廖媛, 王杨. 补体C3在HBV相关慢加急性肝衰竭患者预后评估中的价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 562-566.
[14] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要