| [1] |
Casali PG, Blay JY, Abecassis N, et al. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2022, 33(1): 20–33.
|
| [2] |
Salimi M, Mohammadi H, Ghahramani S, et al. Diagnostic accuracy of radiomics in risk stratification of gastrointestinal stromal tumors: A systematic review and meta-analysis[J]. Eur J Radiol, 2025, 190: 112225.
|
| [3] |
Hirai K, Kuwahara T, Furukawa K, et al. Artificial intelligence-based diagnosis of upper gastrointestinal subepithelial lesions on endoscopic ultrasonography images[J]. Gastric Cancer, 2022, 25(2): 382–391.
|
| [4] |
Zhu C, Hua Y, Zhang M, et al. A multimodal multipath artificial intelligence system for diagnosing gastric protruded lesions on endoscopy and endoscopic ultrasonography images[J]. Clin Transl Gastroenterol, 2023, 14(10): e00551.
|
| [5] |
Duan R, Duan L, Chen X, et al. An artificial intelligence model utilizing endoscopic ultrasonography for differentiating small and micro gastric stromal tumors from gastric leiomyomas[J]. BMC Gastroenterol, 2025, 25(1): 237.
|
| [6] |
Tanaka H, Kamata K, Ishihara R, et al. Value of artificial intelligence with novel tumor tracking technology in the diagnosis of gastric submucosal tumors by contrast-enhanced harmonic endoscopic ultrasonography[J]. J Gastroenterol Hepatol, 2022, 37(5): 841–846.
|
| [7] |
Wang J, Xie Z, Zhu X, et al. Differentiation of gastric schwannomas from gastrointestinal stromal tumors by CT using machine learning[J]. Abdom Radiol (NY), 2021, 46(5): 1773–1782.
|
| [8] |
Feng N, Chen HY, Wang XJ, et al. A CT-based nomogram established for differentiating gastrointestinal heterotopic pancreas from gastrointestinal stromal tumor: compared with a machine-learning model[J]. BMC Med Imaging, 2023, 23(1): 131.
|
| [9] |
Zhang C, Wang J, Yang Y, et al. Machine learning for predicting the risk stratification of 1–5 cm gastric gastrointestinal stromal tumors based on CT[J]. BMC Med Imaging, 2023, 23(1): 90.
|
| [10] |
Yang P, Wu J, Liu M, et al. Preoperative CT-based radiomics and deep learning model for predicting risk stratification of gastric gastrointestinal stromal tumors[J]. Med Phys, 2024, 51(10): 7257–7268.
|
| [11] |
Zhuo M, Chen X, Guo J, et al. Deep learning-based segmentation and risk stratification for gastrointestinal stromal tumors in transabdominal ultrasound imaging[J]. J Ultrasound Med, 2024, 43(9): 1661–1672.
|
| [12] |
Cai W, Guo K, Chen Y, et al. Sub-regional CT radiomics for the prediction of Ki-67 proliferation index in gastrointestinal stromal tumors: A multi-center study[J]. Acad Radiol, 2024, 31(12): 4974–4984.
|
| [13] |
Wang Y, Bai G, Liu Y, et al. Interpretable machine learning model based on CT semantic features and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors[J]. Sci Rep, 2024, 14(1): 29336.
|
| [14] |
Judson I, Jones RL, Wong N, et al. Gastrointestinal stromal tumour (GIST): British Sarcoma Group clinical practice guidelines[J]. Br J Cancer, 2025, 132(1): 1–10.
|
| [15] |
Guo C, Zhou H, Chen X, et al. Computed tomography texture-based models for predicting KIT exon 11 mutation of gastrointestinal stromal tumors[J]. Heliyon, 2023, 9(10): e20983.
|
| [16] |
Zhang QW, Zhang RY, Yan ZB, et al. Personalized radiomics signature to screen for KIT-11 mutation genotypes among patients with gastrointestinal stromal tumors: A retrospective multicenter study[J]. J Transl Med, 2023, 21(1): 726.
|
| [17] |
Wei Y, Lu Z, Ren Y. Predictive value of a radiomics nomogram model based on contrast-enhanced computed tomography for KIT exon 9 gene mutation in gastrointestinal stromal tumors[J]. Technol Cancer Res Treat, 2023, 22: 15330338231181260.
|
| [18] |
Xie Z, Zhang Q, Zhang R, et al. Identification of D842V mutation in gastrointestinal stromal tumors based on CT radiomics: A multi-center study[J]. Cancer Imaging, 2024, 24(1): 169.
|
| [19] |
Starmans MPA, Timbergen MJM, Vos M, et al. Differential diagnosis and molecular stratification of gastrointestinal stromal tumors on CT images using a radiomics approach[J]. J Digit Imaging, 2022, 35(2): 127–136.
|
| [20] |
Ji X, Shang Y, Tan L, et al. Prediction of high-risk gastrointestinal stromal tumor recurrence based on Delta-CT radiomics modeling: A 3-year follow-up study after surgery[J]. Clin Med Insights Oncol, 2024, 18: 11795549241245698.
|
| [21] |
Zheng J, Xia Y, Xu A, et al. Combined model based on enhanced CT texture features in liver metastasis prediction of high-risk gastrointestinal stromal tumors[J]. Abdom Radiol (NY), 2022, 47(1): 85–93.
|
| [22] |
Liu L, Zhang R, Shi Y, et al. Automated machine learning for predicting liver metastasis in patients with gastrointestinal stromal tumor: A SEER-based analysis[J]. Sci Rep, 2024, 14(1): 12415.
|
| [23] |
Lin Z, Xiong J, Feng C, et al. Predictive models of lymph node metastasis in patients with gastrointestinal stromal tumors based on machine learning algorithms: A SEER-based retrospective study[J]. J Gastrointest Oncol, 2025, 16(1): 53–66.
|
| [24] |
Meyer M, Ota H, Messiou C, et al. Prospective evaluation of quantitative response parameter in patients with gastrointestinal stroma tumor undergoing tyrosine kinase inhibitor therapy-impact on clinical outcome[J]. Int J Cancer, 2024, 155(11): 2047–2057.
|
| [25] |
Kong X, Shi J, Sun D, et al. A deep-learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor[J]. J Pathol, 2025, 265(4): 462–471.
|
| [26] |
Wang FH, Zheng HL, Li JT, et al. Prediction of recurrence-free survival and adjuvant therapy benefit in patients with gastrointestinal stromal tumors based on radiomics features[J]. Radiol Med, 2022, 127(10): 1085–1097.
|
| [27] |
Yang L, Zhang D, Zheng T, et al. Predicting the progression-free survival of gastrointestinal stromal tumors after imatinib therapy through multi-sequence magnetic resonance imaging[J]. Abdom Radiol (NY), 2024, 49(3): 801–813.
|
| [28] |
Fu J, Fang MJ, Dong D, et al. Heterogeneity of metastatic gastrointestinal stromal tumor on texture analysis: DWI texture as potential biomarker of overall survival[J]. Eur J Radiol, 2020, 125: 108825.
|
| [29] |
Chen T, Liu S, Li Y, et al. Developed and validated a prognostic nomogram for recurrence-free survival after complete surgical resection of local primary gastrointestinal stromal tumors based on deep learning[J]. EBioMedicine, 2019, 39: 272–279.
|
| [30] |
Xiao X, Han X, Sun Y, et al. Development and interpretation of a multimodal predictive model for prognosis of gastrointestinal stromal tumor[J]. NPJ Precis Oncol, 2024, 8(1): 157.
|